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THE ASYMPTOTIC THERMAL STABILITY OF CONFINED FLUIDS”

by
D.Pnueli and S. Iscovici

SUMMARY

This paper investigates the time dependent thermal stability of completely confined fluids.

The physical model is a fluid enclosed in a rigid container of arbitrary shape. Part of the container walls
are heated and the remainder is insulated. The resulting flow field and its dependence on the time are
the object of the research.

Mathematically the problem is an initial-boundary value problem and the main tool for its treatment is
functional analysis,

The following results are obtained:

a, There exists no slow time-independent flow field except the rest state.

b. A rest state is reached if IlKl"Zpr<1- K, is the characteristic operator of the problem and Zp is the
Hilbert space in which the problem is defined.

c. With the addition of restriction on the body force it is shown that the rest state can exist only if the
condition in b is satisfied,

1. Introduction

The time dependent thermal stability of completely confined fluids is a
particular case of natural convection in closed containers.

A fluid is completely confined in a container which is heated from the
outside. A density gradient results from the non-uniform temperature dis-
tribution and the body forces may induce a flow; i.e. the temperature and
the flow fields are related. The natural convection is characterized by this
interrelation between the internal flow and the temperature distribution
within the fluid.

To make the problem mathematically tractable the following assumptions
were made:
. The fluid is Newtonian
The flow is laminar
Fluid properties do not depend on temperature
The fluid is mechanically incompressible
The density gradient is small
The increase in the internal energy due to the work done by the viscous
forces is small compared to changes in the internal energy caused by
heat transfer.

Y O BN

Since the classical theory of Navier-Stokes is based on the first three
assumptions, their domain of applicability is well known. The fourth as-
sumption is generally valid for fluids since the density changes are small
over a wide range of pressures. The density gradient is considered 'small’

* This paper is based on a D.Sc research conducted at the Dept. of Mech.Eng., Technion, Israel Inst. of
Technology, Haifa, Israel.
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when some characteristic temperature gradient imposed on the fIuid by the
boundary conditions is small compared to the ratio 1/ah, where h is the
"height'" of the container and « the coefficient of thermal expansion. A
fluid which satisfies both assumptions 4) and 5) is sometimes called 'quasi-
incompressible''.” The last assumption which neglects the dissipation in the
energy equation is valid for slow flows with high rate of heat transfer.

Under these assumptions, the natural convection is described by: [1:§56]
V. 9_ = 0
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where

- Liaplace operator

- coefficient of thermal diffusion

- kinematic viscosity

- velocity vector

temperature

- pressure

- body force field

- density

T+g-VT kAT

i gHke = x>
1

The heating conditions are such that they admit, at least asymptotically,
zero‘flow solution to Eq.1).

©

The stability of the fluid depends on whether such a rest state can or
cannot be reached. This is shown to be a function of some critical values
of the governing parameters. The object of this work is to consider these
parameters and show how they influence thermal stability.

2. The Statement of the Problem

A container, R, of arbitrary shape and rigid walls, 9R, is completely
filled with fluid. The container is heated from the outside such that the
temperature T, is given on part of its walls, 8R', and the remainder part,
9R', (BR = 8R' + 8R', 8R' # 0) is heated with a known rate, Q. Both
the functions 7 and Q approach asymptotically values J, and Q., respec-
tively, as t — «. The functions J, and Q. are independent of time but,
of course, need not have the same values everywhere.

In the absence of a body force, the temperature field in the fluid can
be obtained from the Fourier equation:

[¢]
T e
Fral kAT 0
[¢]

t € 0: given T

o]

- T = - Q’L =
t > 0: 3R T k o lor” Q
o
Since 3R' was assumed to be different from zero, the field T approaches
asymptotically a steady state, T, which satisfies:

AT, = 0
0 o
T =9 N k == (R
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Let G be a time dependent body force acting on the fluid, and let G be
conservative in the sense that it is a gradient of some potential. In this
case the fluid cannot remain at rest unless the body force satisfies:

GxVT=0 (2)

When the above condition is not satisfied there is no adequate hydrostatic
pressure |2 §1]. The condition (2) is not sufficient for the fluid to be
in the rest state since it still may be unstable. In previous work the prob-
lem was reduced to the investigation of the stability of the rest state with
no considerations as to how this rest state is reached (if it can be reached
at all).

An internal flow is likely to start at the beginning of the heating. More-
over, the body force G satisfies the condltlon (2) only in an asymptotical
manner; i.e,

GV T = 0 (3)

therefore, the asymptotical behaviour of the flow, rather than the stability
of the rest state, has to be investigated. This work investigates this a-
symptotical behaviour.

The results obtained are: ‘
1. The internal flow dissipates out and the resf state is asymptotically
reached if a certain relation between G, and V T - the criterion of the
stability - is satisfied, regardless of the history of -the asymptotic fields
G, and VTm
2. a) When this relation does not hold, the internal flow cannot attain any
small, time-independent asymptotical value except, possibly, the rest
state, It is not shown that the rest state cannot occur.
b) For G restricted to

G = BV’(I)‘OQ, g = constant (4)

it is shown that the rest state cannot be reached unless the stability
criterion holds.

The asymptotic boundary conditions are time-independent; furthermore
the stability criterion may be made not to hold by the addition of ar-
bitrarily small € to one side of the relation, yet, when Gw= BV Tew,
the asymptotical values of the flow field are either time-dependent,
or must be large. There is some indirect evidence [4] that the asymp-
totical flow is time-dependent. Still the results for that case (the sta-
bility criterion does not hold) leave much room for further investigation.

3. The Basic Equations

Let the basic equations (1) be made non-dimensional by the use of the
following characteristic values:

time temperature acceleration velocity pressure
h? 1 vk vk pyk
Vvk o h3 h h

L

Fig.1, Characteristic values
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o] o] Sk
Further, let T = T + 8 and P = Py, + p J be introduced into the basic
equations which thus become:

V.g_ =0
Dq-prrifag+eG=Vp - (TG - % Ga)
%9 - Pr‘l/2 A8 + g vl =0 (5)
t < 0: given 8 and q
t>0: glaR”; e!aR' =0 5olamn =0

These equations contain the Prandtl Number, Pr = %, as a parameter,

and two non-dimensional functions: the body force field G, and the tem-
perature field, ’f‘, of the hypothetical rest state; these are given or com-
puted beforehand.

When the solutions of the basic equations approach time-independent steady-
state they must satisfy:

V- Qe = 0
1/
r

Kl o
(Qes - V)80 - Pr A0 + q- VT = 0 (6%

2
(goo : v)_q_oo - P Agoo + 600900 = me
Ao -
© = 4 e = . ng =
Sl PO 0 ; @ IR 0 ; an | oR" 0

and all the other terms vanish asymptotically

q

4. Some Particulav Integrval Equalities

The following integral equalities are derived from the basic equations
(5): (the summation convention is adopted everywhere)

1d 1/2 9, 9q; 0 9

—— | qq,dv = -Pr j 24V - jQquidV -5 (TG; - TwGiw)qdV
2 dt vr Raxj E)xj R R

1 d 90 98 oTw

—— ) 0%av = -Pr'l/gg — —av -g 6q, —dV (7)
2 dtJr R 9%; Ox; R ox §

Proof: consider the scalar product of the momentum equations and g,

*) The existence of such a "hydrostatic pressure” which satisfies
0 o}
VP = pPlnG e
is guarranteed by the condition (3).

**) Note that if the body force is restricted to satisfy (4), then the basic equations (6) can be further sim-

plified by a new change of variables:

¢=._l_. .oc___\/—'o.e‘.___\/"‘g
G EQ,T BT ; B

kv . . .
where T3 was used as scale to B. With this change of variables the basic equations look the same as

o
Eq.(6) bul Gasequals now V.
Restriction (4) is required in the proof of result 2 b).
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and the product of the energy equation and 6. Integration over the whole

region R, the use of Green's theorem and the boundary conditions lead
to Eq.(7). The following equalities are intermediate steps.

1)

9%q; 3q
j. q;4q;dV = j q; dv =j q; —n.dS +
R R 3R .

j 9q; 9q;
R 3X]' an

Because q_IBR = { this leads to:

9q; 0q;
5q-Aqu=—j — — dV
R - R aXJ 8xJ

2)
820 96
j 9A9dV=f 9—~—dV=j 9*n1d8+
R R 9x;8x; R 0xi

o8 08

-j — a4V
R B‘Xi aXi

¢
Because laR' =0, ax ’aR' 0 and 8R = 3R' + 8R" this leads to:

, 268 0986
j 9A9dV=—5 — — dV
R R 0x; 0Xj
3)
8qj 1 a(q; qj)
f [a-via)-qav = f a—q av | a—Tav
1
=~J 4;9;9;n;dS -—J‘ qlq]—dV
2 J2R
94
Because V.gq = —— = 0 and IBR = 0 this leads to:
Bxi

j [(a- V)a].qav = 0
R
4)
962

i} 96 1
Gq.VGdV—feq —dV=—J' 2 gv
J.R = b aq, 2 qu 9%,

=1
=3 ), O amyas fe —ldV

Because _‘BR =0 and V. q=0 this leads to:
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5)
a a 1d
j g —gqdV = 5 qi—q; dV = ———j gigi dV
R ot R Ot 2dt vr
6)
0 1 d 2
j 8—8 dV =———5 8 dVv
R ot 2 dt
The addition of the two equalities (7) yields:
1 d
S (92 ¢ qiqi)dV = J‘ (prl/2 90 90
2 dt axi 0% 4

1/2 8q1 8q1
+ Pr dv +j q;dVv
axJ 8xJ ax1 _

"j e[(Gi_Gwo)-f——b(T‘T ):}qldV+
R

Bxi

-J (16, - TGin)q;dV (8)
R

If the field G satisfies the additional restriction (4) then the solutions 6
and g must also satisfy:

j — + — dV=-f*q—dV-j—q1—dV+
ot ot ot R Oxj R ot x4
1d o6 98 8q1 aq 8To->
—_— j prt? _ __+p dv+j 8|Gioo q;dV +
2 dt R 9% 8xj 8xJ 8x
k 9qi o0 9 o o 0 [ 9q;
_j G(Gi-Gim)————dV—J ——qi—-—(T—Tw>dV-5 (TG - ToGygo ) —dV
R oT R Ot 0Oxj R ot (9)

Proof: Consider the scalar product of the momentum equations and -é‘%q.

and the product of the energy equation and g—te Integration over the whole

region R, the use of Green's theorem and boundary conditions lead to Eq.(9)
Some intermediare steps are:

1)
g 9q; 0%q; 9%q; 9q;
} —-Aqu=j _ dV=-J v =
R 8t - R Ot Ox;9x; R 9x;0t 3x;
9q; 9 / 9qj 1 d 9q; 8q;
= - j —— [ — )V = - — — - 4V
R 9X ot 2 dt Jr ij ij
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3q 1 d 8q, q,
j ZAaqdv = -—— | 2 _Zav
R 0ot 2 dt ¥R E)X]' 3Xj
Likewise
08 1 d 96 08
j — ABdV = - —~ - dVv
R Ot 2 dt R Bx; ox
2)

Because G satisfies the restriction 4)

30 9T 9T
j <9G1m'_ + — —q;)dV = —— Gie + qidV
8t ot oxj 2 ot

(see the note on pg.56)

Half of the time derivative of equality (8) is now substracted from Egq.
(9) to yield:

142 aq1 9q; 5q;  8q; 50 99
—_— (G +qi9)dV = «=——1dV+} —qj —dV+Y} —q;—dV

4 dt® ot ot RO 0%, RO Oxg

1 d 0 Q [¢] [¢] (e]
— j' 8/ (Gy - Gig) +— (T - Tw)jqg;dV - 5 (TG; - TeoGie)q;dV }+
R ) R

2 dt aX]'_
dq; %9 o 9q;
+J' 8(G; - Gi) —dV + § —g;i—(T - Poo)dV +j (PG; - T Gieo) —dV
R ot ot  0Oxj 0xXi

(10)

5. Some General Inequalities

1. Let (C.B.S.) denote the Cauchy-Buniakowsky-Schwarz-inequality

[8: 1]
SR f1fo dV l < (SR £3 dV)l/z (jR £5 dV) v

(the existence of the integrals on the right hand side is assumed in this
section)

2. Let (H) denote the Holder-inequality [10 : §1]

p 1/p1 1/pg 1/p
< U £31 dV> q £ d\/) ..... (j 2 gv) "
R R R

where DP; , Pagscvvrenn , pp are all positive and satisfy

I S (f1f5.... £,) dV
R
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3. Let (L) denote the inequality

12 a1, of,
5 2124V < 4 (j f,f,dV> <5 ! dV)
R R v R BXj BXJ'

4. Let (F) denote the inequality

3/2

of of
j t2qgv < c2 { — _—qv
R R aXi Bxl

where f vanishes on 9R' and has a vanishing normal derivative on 9R''.
The (F) inequality is a consequence of the existence of the lowest eigen-

value Ay, of the Helmholtz equation with mixed boundary conditions
[15 : XXV §3]:

Af + A2f = 0

f
— + Bf
(=79

where o and B are point functions defined on OR.

oR

6. Some Elements of Funclional Analysis

6.1. A real Hilbert Space E is defined as a complete normed real linear
space with a scalar product; i.e, a collection of elements X,y,z.... with
the following properties:
Lineayity a) For any two elements x,y € E the sum x +y € I is defined,
andx+y =y +Xx ; Furthermore for x,y,z € E
X+ (y+z)=x+(y + z).
b) For any real numbers A and pu the element AxeE is defined
for every xel, and A(x + y) = Ax + Ay ; Aux) = (Au)x;
A+ wx = Ax + ux.
c¢) There exists a unique element Q such that Q@ x = Q and
Q@ + x = x for every xel.

The norm
d) There exists a real valued non-negative function (called the
norm) defined on E and denoted by | | such that jax) =
= |x|.|xl] for every real X and x€E (therefore [Q[ = 0),
Ix] >0 if x #Qand |x +y| €]x| +]y| (triangle inequality)
for every x, yek.

Completeness
e) If X1, X9,.00unn is a sequence of elements of E such that
lim  fx, - x|
m,n—>od

then there exists an element x,€ E (necessarily unique) such
that x,— x, ; i.e.,

lim  |x, - x| =0
—>co
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(as usual x-y means x + (-1)yeE)

The scalar product
f) There exists a real-valued function (called the scalar product)
defined on ExE and denoted by < ; > such that <x;x> = x| ?
and <X ; y» = <y ; x> for every X,yeE ; furthermore,
Xy + MXg ; ¥y > T AXq ; y) * ou<xg ; y> for all real A, u
and x,yeE. The scalar product also satisfies <x;y><[x] -|y[.
which results from the previous definitions.

If a space E satisfies all the requirements but (e), it is not complete. It
is always possible to adjoin new elements to E and to define for these new
elements the algebraic operations, the norm and the scalar product (without
altering them for the original elements of E) in such a way that the re-
sulting collection of elements (called the completion of E) satisfies a)-f);
furthermore, for any new elements Z there is a sequence x;,Xg,.... in
E, which converges to Z,

A set S, SCE and E complete, is defined as dense in E if every element
z, z€RK, is the limit of a sequence {x,€S .

A Hilbert space is completely defined by any dense set of it and the
scalar product (which actually, defines the norm). In any particular sit-
uation, the new elements may be of a character quite different from the
original elements of E, in the same way, e,g. as the completion of the
rational numbers leads to the real number system.

The Hilbert space E; is said to be embedded in the space Ep, E CE,,
if the same set S is dense in both E; and E,, and, in addition, there
exists a positive € such that

Fle, < €l ly, -
Obviously, this means that every element of E; is an element of E,.

If E,cE, and also E,CHE;, both the spaces Eq and E, contain only i-
([ientical e]lements. The norms in E; and Eg are said to be equivalent
9 :§112].

In the following considerations the elements of the Hilbert spaces will
be either scalar or vectorial fields (point functions) defined on R, or ordered
pairs of such fields.

The Hilbert space Ly consists of all functions which are square integrable
over R. The linear operations are defined in the usual way (addition of
functions and multiplication by numbers).

The scalar product and the norm are

-

< f. ; f >=JR flfde

o
hell <L deV>1/2

[ The s]et C® of all infinitely differentiable functions is dense in L,
14 : §8].

The Hilbert space L, is the vectorial counterpart of L,. The scalar
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product and, respectively, the norm are defined by:

A
c
<
\

it

j U,v,dv
R

The Hilbert products space Lo x Lg ; i.e, the space whose elements
are ordered pairs (u, U) with u €Ly and Ue Ly, is denoted by £. In £ the
scalar product and, respectively, the norm are defined by:

it

v,

4mgu(myp=jtw+Uﬂmv
R

5 1/2
"(u, [_I)“ue =< R(u C+ UiUi)dV)

The set €® = C® x @* is dense in £.

Let € be any positive constant and let a new norm be defined
R 1/2
lw O = [f (elﬂu2+-€”%gugdi
oL, R

The completion of £ in the new norm leads to the Hilbert space denoted

by Le
Since this new norm van easily be proved to be equivalent to the other
one the spaces £ and £, contain only identical elements,

alo

6.2. Genevalized Devivatives in Hilbevt Spaces Let Dﬂqo denote
sl E)XIZ 8xl3
1 2 73

2, + 4, + 23 = £ ; the function ¢ is called the generalized derivative of the
type D¢ of a function ¢ in R, if there exists a sequence of functlons Oms
!l times continuously differentable inside R, such that p, and Dt Ym are
convergent to ¢ and ¢ respectively, in any domain R' strlctly interior to
R; the convergence has to be in the Lg norm.

The propertles of the generalized derivatives, in particular, the c01nc1dence
of the generallzed derlvatlve and the usualderivative, when this latter exists,
were proved in [ §109] [10 : §5}

The Hilbert space Wpé consists of all functions ¢ which are measurable
on R, have derivatives Dkgo of all order k £ Z, and are such that both the
functlon and all these derivatives are square-integrable over R. The scalar
product and the norm are:

[ dlp oty

< (//>=j -
R dxiloxi2exis axilaxiPaxis

3 i=0,1, ..., 2
ip + iy +ig = i

dv

Pl wl = (o5 e >"
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The set C*® is dense in W‘g Moreover, if ¢, ¢4 .... is the converging
sequence of ¢, then D’pj, D¥pg, .. ... is the sequence which converges
to DX, for all k ¢ £ [9: §112].

The Hilbert space w% is the vectorial counterpart of Wé; The scalar
product and the norm in W75 are:

<4 >= dv

( j aiéj ain
R axillaxizzax? axil axifax;3

i=0,1...,1
i, +ig+ig =1

(< ¢ ; ¢>)*

121,

Let the space Ul denote the product space Wf X Wl In this Hilbert space
the scalar product and the norm are:

e, ) W, o>
Lo, Py, = (<o, )5 (o, $)>)"*

The set €©* is dense in ’h)'[. Moreover, for any € > 0, the completion
of €% in the following norm:

I, Pllwt = (72 et + /| gfwl)/?

leads to a Hilbert space Uﬁ Both ! and Uf have identical elements only,
since the two norms are obviously equivalent,

"

<o w>+<P; 2>

CaR is defined as the set of all functions which belong to c! and vanish
on the boundary 8R Cgp+ is defined as the set of all functions which belong
to C! and satisfy the following boundary conditions:

f - . of -

or' = Y 3n|er" TV

Both ch and Clz- are subsets of cl. Cy is defined as the set of all
functions “which belong to both ct and CaR CaR' is defined as the set of
all functions which belong to both C* and C . The Hilbert spaces W2 IR
and Wiz ar* » oObtained from C%R and CaR R respectively by completion in
the Wy norm, are obviously embedded in the space W3. In these spaces
Green's Theorem holds and, therefore, the functions from W5, sr  and
WE or* satisfy homogeneous boundary conditions [9 : §112] in the sense
of Green's Theorem; i.e.

o oY
j y— j ¢ ——dv = j — av
0X. ax ox . ax R axiaxi

The Hilbert space Wg ar and Wg or' are vectorial counterparts of Wé 9R
and W4 5pe respectively. Green's Theorem

jR $pV-¥dv = -jR (AN X\
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holds in this space

Let U]é denote the product space Wé ot X le ar - In this space the
following equality is the equivalent of Green's Theorem.

82w 820
J © + dv =
R Bxiaxi BXJBX]
.
RN\NOX; 9X; 90X 0xy

f (WAY + Q. Ag)dV
R

]

J' (pAw+ g AQMV
R

|
l
|

i

The spaces Dy and, respectively, Djpr are obtained from the sets CéR
and Cy.. by completion in the following norm -

oty = (f ——av)
R axi axi

D and DaR, are Hilbert spaces with the scalar product defined by:

dR

dyp oY
<@ Y> = 5 — ——dV
R Bxi Bxi

& denotes the Hilbert product space Djgrr x Dgr. where Djr is the vec-
torial counterpart of D . the norm and the scalar product are:

8<p dw aqﬁj 8%
<@, §) ; j av
ax ax axi z’)xi

lo, Ay = (< (0, 8) 5 (g, pIN'?

Q) and Ua consist of identical elements. Since both the spaces & and
Ua are product spaces it is enough to prove that the component spaces
have identical elements.

PVoof The spaces Dy and W2 consist of identical elements since
€% is dense in both DaR. and Wg szt + and, in addition, the norms are
equivalent.

dp oy op 2%
ol ES <‘92+i‘>dvs (C2+1)S ——av =c’ =gl
R R

2 *
W3, R’ ox, 0x; 5 0x; 0x, Dar

"

5 op A dp o 2
Lol by = §, ———ave | (q: e = AV = el g

L 8Xl axl Xj

or

2 2 3
1 |0hwh gpe € B0lpy. <€ dobywg o



The asymptotic thermal stability of confined fluids 65
The proof for the vectorial part goes along the same lines,

The set S consist of all smooth, solenoidal vectors which vanish on 0oR.
The completion of S in the L, norm is denoted by Lys-

In L,, two vectors are said to be orthogonal if their scalar product
vanishes. The orthogonal complement of L, ¢ (i.e, the set of all vectors
QSP which belong to Lg and are orthogonal'to every ¢5€L2’s) consists of
potential vectors [11 : §62] and is denoted by Lgo- -

Let H denote the completion of S in the D norm. The product space
Dapr x H is denoted by Z. By definition, the norm and the scalar product
in Z are:

Bp B 9p. 90
<(e. ) ; (w, Q)>=5 _— +— 1)V
- R\ 9x; 9x; 0X; X

e, &) = (<o, 8); (9, $)>)*2

7z £z 2
In this space an obviously equivalent norm can be introduced:

o, B, = (7 el L o eI

The space Z normed in this way is denoted by Z.. For € = Pr the space
Z¢ 1is denoted Zp, . The stability problem is investigated in this spece.
The first element ¢ in (p, é)f Zp, may be thought of as atemperature
field which 'vanishes'' on 9R' and has "vanishing normal derivative' on
dR'". The secondelementin (p, ) represents a velocity field which "vanishes"
on oR.

6.3. Embedding Theovems: The following embedding theorems are either
parts or direct correlaries of Sobolov Embedding Theorems [9 - § 114:].

) L1 1 0o .
W, ¢ W, ocLL.L. CW,c W, =L,
! 1-1 1 0 =
whcwil oL, C W, c WS =L,
whcadt L. cwl cwe =L

The space & is embedded in £: X .
All the elements of @ are identical with those of W5. W3 is a proper
subspace of w1, which is embedded in &

2@ =w, cuw ck .

The space H is embedded in Dyy:
The norm in both H and Dag 1is the norm of D; the embedding follows
from the fact that S is a proper subset of Dsz (vectors in both S and Dy
have components in C'aR but only solenoidal vectors are in S).

The space Z is embedded in & since they both have ‘Dapr as first com-
ponent; the second component of Z, is embedded in Djg+ , the second com-
ponent of @.

The embedding of Z in £ follows from the embedding of Z in & and the
embedding of @ in £
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The space H is embedded in Lgjg :
The set S is dense in both H and Ly g, and

3¢ 9¢.
I2la = 5 — —— dV < CQJR p.6;dV = C?|g] 32; i.e. the conver-

R axj axj

gence in H follows from the convergence in L.

6.4. Opevators in Hilbevts spaces: Let E; and Eg be Hilbert spaces and
let S be an arbitrary set of E;. The set of ordered pairs {(x, Ax)}, X€eS
and A x € E,, defines an operator A from Ei fo E 9 if there exists no pair
in the set having identical first element and different second element. The
"domain" of A is just the set S and the ''range" of A is the set of all
elements in Eg of the form A x, xeS. If E1 is the domain of A the operator
A is said to be defined oz E;; if, in addition, the spaces E; and Eg are
identical, A is said to be an operator m Ej.

The operator A is said to be bounded if the image of any bounded set
in E; is a bounded set in Eg; i.e, xueS and |xg| < M imply |Ax,|<N
where both M and N do not depend on n.

The operator A is said to be continuous af x,eS if the image of any

sequence {Ax 1 which converges to Ax i.e, if lim |x, - xofg; =0
’ [~ O
then lim ||Axn- AXOHE2 = 0. This kind of convergence is sometimes
n—» 00 ’

called strong convergence and denoted by =. Since not other kind of con-
vergence 1s used in the present work, the term strong is omitted.

Operators which are continuous on every point of E,, are simply called
continuous on E 1.

A bounded set S By, is called compact in E; if any sequence of elements
{XHGS} contains a subsequence which converges in the norm of Ej., The
operator A is called compact on a set SCcE;, if it takes every bounded
subset of S into a compact set in the space Eg. An operator which is con-
tinuous and compact on SCHE,, is called completely continuous on s,

The operator I is called the identity operator in E if the image of every
element x € B is the element x itself, Moreover, if E; C Ey then the identity
operator L on E; to E, is defined and it takes every element x €E; to the
same element x which is now regarded as an element of E,.

The identity operator [ on W to L, is completely continuous [9 : §114].
Both the identity operator on W% to L, and the identity operator on W!
to £ are completely continuous, because these spaces are products of a
finite number of Wl2 or respectively, L, spaces.

The operator A is called distvibutive on E if

A(Ax + uMy) = AAx + uAy,

for all x,y e B4, and all’ real numbers X and u. An operator which is both
distributive and continuous is called lineav.

Theorem: The distributive operator A is linear if and only if there exists
a constant C such that [Ax| g C? [x| for all x € B, [9: §97]. The inequality
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|Ax] < C? |x| guarantees A to be bounded.

Let A be a linear operator; if there is bounded operator B such that
AB = BA = I, then B is called '"the inverse of A" and is denoted by A -1
The inverse operator is linear [9 : §127:].

The set of all linear operators on E; to E, is a Banach space (satisfies
a) to e) in the definition of Hilbert spaces) usually denoted E g [9 : §104].

The norm of a linear operator, which is an element of E 192 satisfies:
1A x|
lal = sup = sup IAaxl =  sup |Ax]
x€E) | ] x€EqJxfel x€Eq,[x]=1

Theovem [9 ; §136]: Let A be a linear, completely continuous operator in
E; then:
a) To every given €, € >0, there exists only a finite number of values 2,
Ix] <e, such that the equation Ax + Ax = 0 has a non-zero solution.
These solutions are called eigenvectors of A and the corresponding A are
called eigenvalues.

Corrolary of a). The set of all eigenvalues is at most countable.
b) The operator (A - AI)"l exist for all regular values of M all values of
A which .are not eigenvalues).
¢) If, in additions, the operator A is symmetric; i.e.

<y ; Ax > = <Ay ; x> for all x, ye€A,

then there exists at least one eigenvalue. Moreover, the highest eigenvalue
satisfies:

AT = sup <AX ; x> = ﬂA"
X€E1;Hx"=1

A linear operator from K, to E, is called a linear functional on E, if
E, consists of all real numbers.

Riesz' Theovem [11: § 3]: Every linear functional 1 on E can be written
as a scalar product of a constant element xj e E and the element xe¢ E ;
i.e.,

I(x) = <x¢ ; x> for all xeE;

the element xj is unique.

An operator b acting on E1 x Ej to the real numbers system is called
a bilinear functional if for every y, y €Eg4 the operator is a linear func-
tional on E; and vice-versa, for all x € E; the operator is a linear func-
tional on E,. Bilinear functionals are bounded operators because |b(x, y)sC?
fx Il yii, for all (x,y)} € Eq. The smallest value C? for which this inequality
is still valid is called the norm of b, ||bll.

bl = sw b )|
Ixy=1, 1 yp=1

From Riesz' Theorem follows [9 : §125] that each, bilinear functional
defines a unique linear operator A (or its conjugate A") given by:

b(x, y) ,<Ax ; y>=<x ; A¥y>
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(the last equality is the definition of the conjugate operator A*). Moreover,
the inverse is also true: every linear operator A defines a bilinear functional
by means of the same expression.

A bpilinear functional is called symmetric if

b(x, y) = bly, x)

The operator defined by a symmetric bilinear functional is, of course, sym-
metric.

6.5. Frechet Devivative of Operators [12: 1 §3.3]: Let A be an operator
on B, to E ; if, at the point x e E;

A(x, + h) - A(x,) = Agh + A (h)

[o]

where A} is a linear operator on he E;, and

(A (h)]
lim ——— =0
ﬂhu—*o Ihl

then Afh is called the Frechet differential of A at the point x, € £, and
A;(h) is called the remainder of the differential. The Frechet derivative
of the operator A is denoted by A'. It is the operator from E; to Eq g
which takes elements x€ E;, on which the Frechet differential is defined,
to corresponding linear operator Afe i 1,2. For clarity two examples are
given:

Example 1: Let A be the operator defined by

A = {tec, £9)
By definition, for every f e€C
Ap = {thec, 3t )} ; A, ={hec, 350" + n’)

i.e. the function 3f§h€C is the Frechet differential on f, in the direction
of h, and the operator

Ay = {hec, 315h)
is the derivative of A on f,. The derivative of A is the operator A’
Al = {(feC, (hec, 3£2n)
Example 2: Let A be defined on H'by:
A= {(VeH, (V' V)V)
By definition, on V,eH
Ay = {(heH, (V- V)b + (h-V)V,)]
Ay = {(heH, (h-V)h)}
The‘Frechet derivative of A is the operator A'.

A= [(Yel, (heH, (V-V)h + (h-V)V)
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The Theovem of Hildebvand and Graves: Let B be an operator taking pairs
(x, y), x€Eq, yeEgq into a space Ej. Further, suppose that B (x,, y,) = Q@
for some (x, y,), that B is continuous with respect to (x, y) in some
neighborhood of (x,, y,), and has in that neighborhood a (partial) Frechet
derivative with respect to x which is continuous in that neighborhood with
respect to (x, y); let B at the point (x,, Yo), have a linear inverse operator.
Then, in the neighborhood of (x,, y,}, the equation B.(x, y) = Q has a
unique solution for every y [12 : 5 §I7].

7. Intevymediate Results
Theorem: Let QeH be given, and let (p, ¢), (p,¥)eZ. The integral b; =

= 5 ¢ 2-¢ dV defines a bilinear functional on ZxZ.
R

Pyoof: The distributive properties with respect to each of the elements
(s __) or (p, ¥) is obvious. To prove the boundedness consider™

s (o (e ()™
(e o) () ()" ()

By addition of positive term to the right hand term, this becomes:**)

lj @dev! j ¢ O, dV
R

<C¥ e, B, 2B 120 e, O 10, 8 (11a)

f vovav
R

Because Zcd (| I.I <€ ), and Q is a fixed point, this yields

I,

<C* e, D, Ko 01, < CPle, A MW, 0, (12)

j eR-¢dV
R .

It is important to note that everywhere in these inequalities the elements
(¢, ¢) and (v, ¢) are interchangable:

f oee-pav)< e St 9IS 12121 o, L, (11b)
R

Theovem: Let QeH be given and let (p, 4),° ¢)eZ. The integral

*) In proofs, the domain of the integration, always R, and the volume element will be omitted.
€ means, from (H) inequality etc,
H

**) All comstants are denoted by the same C as long as their numerical values are irrelevant.
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b2 = j 9.V pdV is a bilinear functional on Zx Z.
R

Proof: The distributiveness with respect to each element (¢, ¢) or (v, ¥)
is obvious. To prove the boundedness consider: - -
l 5 00— Y av

o g (o) (=) %)T/Z
T G Y U2 2T

(L)

fl

j 9.V pdv
R ’

The addition of positive terms to the right hand term gives:

1,4 /

e Bl o A1 10l 1ol o, w1, ()

j 6V edv| <
R

Because Zc £ and £ is a fixed element then

lw, vl (14)

< C* |, 9) .

2,

5 ¢Q-Vpdv
R

i.e, b, is bounded.

Now, 2¢ H means §2 =0 and V- £ = 0; therefore the bilinear functional

is skew symmetric ‘aR
5 p2-Vpdv = -5 v VedV
R R

i.e, (g, #) and (p, ¥) are interchangeable.

[. j 92 Vedv|<sc® |Gy g, |l9l11/4ﬂﬂ|13/4ﬂ IIW’H w, W (15)
R : ‘ :

The element Q2¢H can be considered an elementbof Z, (v, Qe Z, with
arbitrary w€ D 5. . With this interpretation inequalities 13) and 15) become:

j P2 Veav I, 00 I, 61 T, 201" Jw, @2 Jw, 9,
R
(16)
L@Q-de <€l o, 1w, 21 . 2B jo, 0y o 0]
(17)

Corrolary: The integral by =f P. [(Q - V)zL_'] dV defines a bilinear functional
R
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functional on ZxZ, because by is a sum of finite number of bilinear func-
tionals of the form of bg.

The following inequalities are direct consequences of the definition of
and the properties of by, Egs.13) = 17)

‘ § ¢ M ve)av | <c® e o1 Lo o1 Tol 1l o, wl,
R
(18)
] § ¢ [2vHlav<c Ko g, Lo i, (19)
R

(213 [, 0l Yo, o]

jg- [(@-vu] av<c® . gl |al
R

(20)
jRg [(2- V)] dv<C? ale 1o, S dw 2l Jw, 2 ol
(21)
sl@-viglav < c® o, g, lwo 17 iw, 202 10, 017 1, 002"

R
(22)

Theorem: Let K) be the linear operator associated with the linear func-
tional

S wG-édV-j. ¢V T, av
R

R

ive, for all (¢, §), (v, Y)eZ

<(¢. #) K (u, zf)>=-f wG- gdv - j 0V R eav
R R
(23)

then, K} is completely continuous.

Proof. The continuity of K§ follows from its linearity. To_prove the com-
pactness let S, S ¢Z, be a bounded set and let {(wu, £2,)t be a sequence
of elements in S1 Because ZC D CUZ, this Sequencu can be considered
a sequence in W, The 1dent1ty operator on Uz to £ is compect and
therefore the sequence {(wn, )6'&9’15) containes a subsequence which con-
verges in the norm £ norm (see § ).

For simplicity the subsequence is also denoted by {(wn, Qn)}.
The convergence of {Kz Wps Qn)} (the image of the convergent subsequence)

follows from:
a) Since both G. and VT‘,O are fixed elements (see Eq.12))
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{ fouc-gav |<c o 20 K 9l

z

l jR Q- v, dv| < % fw )] . 8

z

b} By definition a) leads to
[ <o, 8) Kiw, 2> 1<C? J@, @1 I, g, for all (p, gle 2
or, by substituting (9, ) = K, Q)

IKjw, 20, < C* N, lp

z

¢) Because Ky is linear, and because of a) and b) and the convergence of
{(wn, Qn)} in the £ norm, then
lim | Ky, Q) - Kglog, 21, = m [ Ky, 20) - w,, 200, =

m,i— m,n—»o=

< Cz lim “(wma Qm) - (wn: Qn)nx =0

m,1—»o
This inequality is, by definition, the condition for convergence of
{Kﬂ(wn’ —Qu)} in Z.

Theorem: Let (w, R)¢Z be a fixed element and let P) be the linear
operator defined by:

<(o, ) Pylv, ¢)> = - f eQ-Vypdv - j o¢ - Vudv +
R R

j ¢- [(@ vi]av -j g [@-v)e]av (24)
R R

for all (¢, @), (v, ¢)eZ
then, Pjyis complétely continuous.

Proof: The continuity of Py follows from the linearity. To proce the com-
pactness let S, SCZ, be a bounded set and let {(Lpn, Y a); be a sequence
in S. As in the previous theorem this sequence can be a-priory chosen
to converges in &£. Similarly, the convergence of {Pjp(y,, gn,\} follows
from;

a) The first two integrals in Eq.(24) are bilinear functionals of the from
of by ; hence, (see Eq.17)

-

3/4 1/4 4

jRP Q- v(*l’)n dV] CZ “(Lp, é)" 7 “(“’n» .‘d_jn)"‘,el/A: “(wu-_'r/_’n)ﬂ 7 “(w, Q)"ﬁ “(U: Q)" Z/

5 %.de( <C o, B, Wom Udlp " Non, €12 I, 91, W, 20 >
R (25a)

-
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b) The other integrals in Eq.(24) are bilinear functionals of the form of
by; hence, (see Eq.22)

H w,] avec? e, g, Kop vl loull 2 o, 21 o, 2l 2

Hszﬂ [ v)2] av< C? (e, ¢)l J(wn, 000} " (NN e w2l L o ,_ﬂf”/‘*
(25b)

¢) Substitution of (p, §) = Pl((pn, .'/fn) in (25a) and (25b) above, and because

(w, £2) is a fixed element:

[Pp(0, 2l < € Jwn vl e ¢ I (26)
d) Because S is bounded (v, Qn)ll Bt < c?

[Bpton al, < €% oy gl
e) Because P, is linear d) becomes

lim HPJ(%: Ya) - P,E(wm' ym)uz = lim IPI{(wm: gm - wn: }"

n, n—»e m,N—»oe

<C? lim e, ¢,) - (0. ¢, =0,

m,R—>co
which means that {Pz(wn, gn)} is convergent in Z,

The operator Pg can be considered as determined by the element (w, ).
Because of the symmetry in the positions of (w, ) and (v, ¢), Py can be,
alternatively, considered to be determined by (w, ¥) ; therefore (w, ) and
(w, ﬂ) are interchangeable in the previous inequalities.

Theovem: Let the operator K in 2*) be defined by the following relation:

<le, 9 Ko, Q> = —j - [(2-V)R)dV - jgpg-v wdVv
) for all (w, R)eZ

s is properly defined as an operator,

s 1s bounded,

¢ 1s continuous,

s 1s compact,

i.e, K, is a completely continuous operator in Z.

1) K
2) K
3) K
) K

Proof: 1) Let (v, 2)eZ be a given fixed element. The righthand side integrals
are, obviously, a linear functional 1(¢, ¢). This linear functional is formed
by the addition of a bilinear functional of the form of by to a bilinear
functional of the form of b3, in both of which the second element has been
held constant. This constant element was made to equal the defining el-
emecnt. Therefore (see Eq.17 and Eq.22)

") Because Z and Zpy have only identical elements and their noums are equivalent all operators can be,
alternatively, considered as defined on ZPr'
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(27)

H 02 vodv |<c? o, g, @ DY 0, 2]

R

J, ¢ kaviglav | <c® i g, 1o 21 e 21"

R

or, because (w, ) is fixed in Z:

j 0. VwdV + j g [2-vielav | <c” fo. B (28)
R R

Now, from Riese' theorem, the element K (w, £2) is uniquely defined by
the linear functional 1(p, ¢); but 1(p, ¢) is determined by the fixed element
(w, £); and, therefore, the set of pairs {(w, Q) Kg{w, Q)} defines the
operator K.

2) The boundedness of K  is, obviously a consequence of (28).

3) Let (w,, ) be a sequence which converges to (w,, 2,)€ Z. By definition:

<(\PJ é): Kg( ——11) - K, ( Qm)> = "‘j‘ LP(QH‘V(“)H - Qm'vwln)dv +
R

J $- [2,-VI2, - (2, -v),] av
R
or, by addition and substraction of identical terms {(see Egs.17 & 22)

A9, B K 0y 25) - Ky, 2,0><C7 ion ), (10 201 00, 2015 +

w0 s 2 E A 2 N 24) - @4 QW 20) - @, 2005

Substition of (¢, $) = Ky(wy, ;) ~ K (w,,, £2,) in the last inequality leads
to

lIKS(wH’ £ ) - Kb(w

!

2. < € (w, 20" e 2,002 +

m? —m
1/4 3/4
e

1/4 3/4
"(wm-' Q—m)“f/ “(wm’ 2L " )"(L‘)nJ —n "(wm-’ Q Wy, -—u) (wm—*Qm)“Z
(29)
and because of Zc &£ this becomes
nKs(wuJ £2,) - Klwp, Qm)" < C¥( "(wn—‘ Qn)”z + "(wm’ m | " (W Q) -

- {w )“z and {Ks(w 2 e Z} converges.

m? Qm n* =n

4) let (w,, £2,) be a sequence in S (Sc¢ Z and S bounded). It has already
becen shown that such a sequence can be chosen to converge in

There exists an M, independent of n, such that ||(wn, Q“)HZ< M and
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therefore, from Eq.29):

K, 2) - Ko 20, < Mo, 2) - @ 2,0

=n - —n m

Because the sequence (w o Qu) converges in £

lim | KW

m, n—»occ

Q) - K ( Q)"Z=O

n* =n m?’ =m

hence the sequence {Ks(wn, Qn)} converges in Z.

Theorem: The operator K = Ky + K has a continuous Frechet derivative
in some neigborhood of Q.

Proof: Let (v, $)€Z be a fixed element in some neighborhood of Q and
let (h, H)e Z; by definition:

~

<(¢, B); K, 9> = j ©Ge- $dV - f b2 VT, +
R R

-} ¢ lle-Vvig]av - | ¢@-Vwav
R R

<(o, $); K((w, ) + (b, H)> = j (0 +h)Geo - $dV - j @(Q+H) VT, dv+
R R

R

- j g- {2+ n-viQ + W}av - j‘ (2 + H)- V(@ ¢ h)dV
R
i |
and, therefore

<(g, §), Kl(w, 2) + (b, H) - K, Q) = - j h¢. GedV - j GHV T dV+
R R

- J'Rg- (-9 av - §

GH-Vh dV - -" 4. [(H-v)Q]av +
R

R

N IR¢:- (@ -v)H]av - 5R¢Q-Vhdv - ."R ¢H-Vuwdy

for all (¢, gleZ

<(p. 4) K((w, £2) + (b, B)) - Kb, 22> =<, $); Kyth, H) > +

+ <, ¢); Pyth, H> + <(¢, ¢), K (h, H)>
for all (¢, d)e Z

Because (g, é)€Z is arbitrary and because Z is complete
K{w, @ + (b, W)} - Ko, 9 = (K; + Py)h, ) + K (h, H).

(Kp + Pg)(h, H) is identified now as the differential of K on the element
(w, ) in the direction of (h, H), and KyL, H) as the remainder.
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The operator K! which takes elements (w, 2) from someneighborhood
of Q to the operator Ky + Py (Py defined on the given (w, _) is the Frechet
derivative of K. On the element Q, the derivative K has the value of
Ky because Py defined on @ is, obviously, the null operator

To prove the continuity of K' let { . Qn)} be a sequence which converges
to (w,, 2y)€Z and let K denote the value of.the derivative of K on the
element (w,, .. Because Ky is independent of (w,, £,)

&y - Kol = IRy + Pry - Ky + Pyl = [P Pl = [Pyoen | (30)

where Py, is the operator Pf defined on (w,, £,) and Py is, of course
Py defined on (w , £.) - (W, £ ) From the previous inequalities (see

Eq. 25)) follows that there exists a. constant C” such that:

" 1/4 y )_

"Pl(m-n) " = sup le(m-n) {h, ﬂ)ﬂ< c? u(w 0 Q
Jo, 1) =1
1>

_(wm E]

and because Zc £

ﬂpl(mm)" scz l(wn’ Qn) - (wm’ Qm)uz

The convergence of {(Kt)} follows from the convergence of (w,, £2,) in
Z and from Eq.30); i.e

. ! ! . 2 .
lim K, - Kif = lim [Py ] <€ lim Jw, 2,)-(0, 2,1 =0

m,n—» o0 n,in—»00 m,n —»o0 Z

Theorem: Let (&, ¢)e ZandletA be a regular point of Ky (notaneigenvalue,
see §6.4). The solutlon of the equatlon
0 = B(p, 8) = Klp, $)-2I{p, §) is unique in some neighborhood of Q. This
solution is - -

(0, $) = Q

Proof: From the properties of the operator K follows that in some neigh-
borhood of Q the operator B has a continuous Frechet derivative B' (ob-
viously , I' exist). Moreover, Bg = Ky - Aln = Kjg Al. Because A is a
regular point of Ky, the inverse operator (K{- AI)-l exists and is linear
(see §6.4). Hence, from the Hildebrand - Graves' theorem follows that
the solution of the equation B(p, ¢) = Q is unique in some neigborhood of
Q. From the definition of K follows KQ = Q; hence

il

B(Q) = K(Q) - 211Q = Q

8. Results
Theovem I: The solutions of Eq.(5) approach zero asymptotically as

t — oo if |K,f Zp < 1.
r
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Proof: Because G and vt approach Goeo and V’%oo asymptotically, there
exist two functions fy(t) and fy(t) such that:

3 0 o]
71:5 (ta, - TG, dv = f,(t)
R
8 9 9 _
Slrlllé) I(Gi - Gy +'3_X‘i (T - Too)l = fy(t)
onl

The functions f(t) and f,4(t) approach zero as t — c0. Let (8, gq), (8, Q)€ Z p,,
be a solution of Eq.(5). - -

Then:
1.
o a o o 9 1/2 9 1/92
5 (ta; - T_.G)a,dv < f (ta, - TG, )%y qudv
R (CBS) R R
o o o B 2 0 0 ] 2 1/6

5 8 (G, - G, )—(T ~ Too)|q;dV < j'e [(Gi- Giw)+—<T-Tu.,)] avi .

R 0x (CBS) R OX ;

1
9 o 0 9 1/2 1/2
.(j qide)2 < sup I(Gi - Gi) —(T - Too), j' 0 dV> (" qiqidV>
R inR X R R

on i

By the addition of positive terms on the righthand side these become:

t j (TG, - T,G, JadV \s SO (R B
R

(31)
9 o o 2
j 8[(G; - Gio) +—— (T - Tu)lq; dV| < £,(1) (6, q)f,
R 09X
2. By definition
f oG vhaaav] - <o 9 ki, 9] -
2 et 2
< |Ky(9, 0,
ke, al, le. all,
and because of the linearity of Kj
2
j oG, + Vv )-adv | < Ikl e, g
R Zpr — " Zpr
3. From the above inequality and from Egs.(18) and (31)
ii” 0 1/2 L 2 2
o LR PRRAEEE Il Db, 0, + m@le, ol +nmie, af,
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Let Kol ipr < 1. Because Z, and Z have only identical elements, from
ZC & follows that ZPrCoC. Hence, there exists a positive constant Cf such

that
(1 Jkgblee. @b < cf e gl (33)
Substitution of (33) in (32) yields
S el < et v ddanfe, 9, + 1) (34)

. 2
4., Let € satisfy 0 < € < C;, Because both f,(t) and fgy(t) approach zero
as t — oo, there exists a time t' and a positive constant C such that for
t >t

i) g-ciref=octco

2
fl(t) < €

Substitution of (35) in (34) yields

L e al, < - cPe, alf, + €

and by integration )
€

0 < "(9: g)(t)"£ < [_C? [exp (—C2Z)-exp (—Czt):] +

+ e, @yl exp (sz)} exp (-C7t)

Hence, (8, g} tends to zero in the norm as t — oo i.e,

Iim }(8, q)
Lm 6, a1,

The physical interpretation of this theorem is direct:

When G and VTe are such that IK lzp, < 1 any internal flow damps
out, regardless of the history of the asymptotical values of G and VTeo /.
In other words, the rest state is stable when [Kf zp < 1. The inequality
IKgl z,, < 1 is called the stability criterion. —

The computation of the norm of Kj is a numerical problem and approx-
imation methods such as the Ritz'Method and the Weinstein's Method are
available.

Theorem II: The solution (8, g) of Eq.(5) cannot attain any small time-
independent asymptotical value different from zerounlessX =1 is an eigenvalue
of K,. ’

Proof: Let (8w, qoo)s be the asymptotical values of some solution (8, q)
of Eq.5). Hence (8., Qo) satisfies Eq.6. Now consider the scalar product
of the momentum equafion and some ¢, (¢, @)e Zp, , and the product of the
energy equation and . Integration over R leads: to:

o)
*) Note, however, that the intemal flow becomes damped as soon as G x VT = 0 and the operator Kf,
[o}
defined on G and VT satisfies fKp| 7p < 1.
I
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Lé Bgm-V)gw:l dv - Pr1/2 j‘Ré Ac_lde +jRé. (em(_}w)dV - jRé vadv

J&pgw- Ve dv - Prt/? f
R

@ ABdV + j' 9q- VT,dv = 0
R R

for all (y, £§)6ZPr

Because (g, _¢_§)€ZPr , the use of Green's Theorem

3; 39
J'¢.Aqwdv=- ——av
R - 9x: 9x;
J ] )
9¢ 98
ijedv = e f——av

and the definitions of K, Kjyand I lead to

-, ) 5 K8y, qu)> - <@, 2) Kp(8o Qo) + <(9, B) 5 UBus qoof>=0

for all (9, @l Zp,

or,

for all (¢, @)€ Zp,

Because the element (@, @) is arbitrary Eq.(36) is satisfied only if

K(Beo: doo) = UBeos Goo) (37)

L.et now A =1 be a regular point of Ky (hence, not an eigenvalue). If
some neighborhood of Q, the pair (8., g} = @ is the unique solution of
Bq.(37) (see theorem in Preliminary Results)

The operator Kj is completely continuous and its spectrum is discrete.
Therefore, eventhoughX =1maybe an eigenvalue of Kf (i.e, if IKflz, > 1)
the associated solution does not depend continuously on the physical parameters
of the problem and, consequently, is physically inadmissible.

Theorem II implies then that even when “K[" zpy = 1 the internal flow
cannot approach any small time independent asymptotical value, different
from zero. In the general case investigated here if was not proved that
the rest state is unstable if [Kjf zp = 1

However, if G is restricted such that it satisfies Eq(4), the rest state
is unstable when [K,| zp, = Lt

Proof: When G~ V%m (see note on pg. 5) the bilinear functional which defines
Kjf is symmetric. In this case the associated operator Kjf is symmetric.
Because K, is symmetric and continuous it has an eigenvalue A* such that
Ix*] = [|Kyl. This eigenvalue can be made positive. ‘
Let | Kf” = 1 + €% and let (8%, q*) be the eigenelement associated with
+ =1 + €2 ; i.e, -
Ky8*, g%) = (1 + €*)Ie*, q*)
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or

<(e, B); Kg(0%, q*)> = (1 + €%) < (9, 4); (8%, q*)> (36)

for every (¢, gé)EZPr

By definition Eq.(36) implies

<]

aT
_5 6" G, ¢, dV -J $q; —=dv =
R R o0x .
1
8% 9y . aql 8¢,
= (1 + ¢?) j <’r'1/2 —_— + ppl/? ——1—~—l>dV (37)
R X 00Xy 0X. X,

G and VT approach G, and VTOC, asymptotically. Hence all integrals which
contain G - G and VT - VTOO, in equations (8), (9) and (10), approach
zero as t — oo.

Suppose that after some time the rest state is attained and let (8%, g7*)
and 8 € €}{8*, q+)“<<l, be a mechanical perturbation. After a ghort time

the disturbance in the fluid, (84, g¢gq), satisfies the asymptotic from of
Eq.(10); i.e. -

d 20t ap* oq* Bq+
— (ej +q,q,)dV - & j(Pr_l/Z* + pri/f —d >dV +
R R

dt dx; 9X; 9% 9X;
5 9*( > qf dV

Substitution of Eq.(37) in this equation yields

d y 80% 00" . 9q; aq}
— |\ 8%+ qidqid)dVgc4j Pr? — — 4 prtf? av > 0,
dt R 9%, 09X axj ij (38)

elter, g*)zpr << 1; all terms which are of the third power in €, in the
equatlon (37), may be neglected. Hence as long as (84, qg) are close to
€8+, q*) -

2
L9 (02 )av (> aChaqhdv 0 (39)
S +q.. q, +— — > 3
d id id
4dt R

From Eq.(38) and Eq.(39) follows that (84, qd) can decay only when it
is no longer small; hence, the rest state is not stable.
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