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THE ASYMPTOTIC THERMAL STABILITY OF CONFINED FLUIDS';' 

by 

D. Pnueli and S. Iscovici 

SUMMARY 

This paper investigates the time dependent thermal stability of completely confined fluids. 

The physical model is a fluid enclosed in a rigid container of arbitrary shape. Part of the container wails 
are heated and the remainder is insulated. The resulting flow field and its dependence on the time are 
the object of the research. 

Mathematically the problem is an initial-boundary value problem and the main tool for its treatment is 

functional analysis. 
The following results are obtained; 

a. There exists no slow time-independent flow field except the rest state. 

b. A rest state is reached if [ IKj lZpr<l ,  K 2 is the characteristic operator of the problem and Zpr is the 
Hilbert space in which the problem is defined. 

c. With the addition of restriction on the body force it is shown that the rest state can exist only if the 

condition in _b is satisfied. 

1. In troduct ion 

The time dependent thermal stability of completely confined fluids is a 
particular case of natural convection in closed containers. 

A fluid is c o m p l e t e l y  c o n f i n e d  in a c o n t a i n e r  which  is hea t ed  f r o m  the 
ou t s ide .  A d e n s i t y  g r a d i e n t  r e s u l t s  f r o m  the n o n - u n i f o r m  t e m p e r a t u r e  d i s -  
t r i bu t i on  and the body f o r c e s  m a y  induce  a flow; i . e .  the t e m p e ' r a t n r e  and 
the f low f ie lds  a r e  r e l a t e d .  The n a t u r a l  c o n v e c t i o n  is c h a r a c t e r i z e d  by this  
i n t e r r e l a t i o n  be tween  the i n t e r n a l  f low and the t e m p e r a t u r e  d i s t r i b u t i o n  
within the f luid.  

To m a k e  the p r o b l e m  m a t h e m a t i c a l l y  t r a c t a b l e  the fo l lowing  a s s u m p t i o n s  
w e r e  made :  
1. The f luid is Newton i an  
2. The f low is l a m i n a r  
3. F l u i d  p r o p e r t i e s  do not  depend  on t e m p e r a t u r e  
4. The f luid is m e e h a n i c a l l y  i n c o m p r e s s i b l e  
5. The d e n s i t y  g r a d i e n t  is s m a l l  
6. The i n c r e a s e  in the i n t e r n a l  e n e r g y  due to the w o r k  done by the v i s c o u s  

f o r c e s  is s m a l l  c o m p a r e d  to c h a n g e s  in the i n t e r n a l  e n e r g y  c a u s e d  by 
hea t  t r a n s f e r .  

S ince  the c l a s s i c a l  t h e o r y  of N a v i e r - S t o k e s  is b a s e d  on the f i r s t  t h r ee  
a s s u m p t i o n s ,  t h e i r  d o m a i n  of a p p l i c a b i l i t y  is well  known. The f o u r t h  a s -  
s u m p t i o n  is g e n e r a l l y  va l id  for  f lu ids  s i nce  the dens i t y  c h a n g e s  a r e  s m a l l  
o v e r  a wide r a n g e  of p r e s s u r e s .  The d e n s i t y  g r a d i e n t  is c o n s i d e r e d  " s m a l l "  

* This paper is based on a D.Sc research conducted at the Dept. of Mech.Eng.,  Technion, Israel Inst. of 
Technology, Haifa, Israel.  
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when some characteristic temperature gradient imposed on the fluid by the 
boundary conditions is small compared to the ratio i/ah, where h is the 
"height" of the container and a the coefficient of thermal expansion. A 
fluid which satisfies both assumptions 4) and 5) is sometimes called "quasi- 
incompressible ~'. The last assumption which neglects the dissipation in the 
energy equation is valid for slow flows with high rate of heat transfer. 

Under these assumptions, the natural convection is described by: [i:w 

f~oa t v .  Cl= 0 ' 1 V P  + v A q -  oeTG (1) q + ( q . V ~ q  = _  o - - 

[ . . a  T + q .  V T  = k A T  

where 
A - Laplace operator 
k - coefficient of thermal diffusion 
v - kinematic viscosity 
q - velocity vector 
T - temperature 
P - pressure 
G - body force field 
p - density 

The heating conditions are such that they admit, at least asymptotically, 
a zero flow solution to Eq.l). 

The stability of the fluid depends on whether such a rest state can or 
cannot be reached. This is shown to be a function of some critical values 
of the governing parameters. The object of this work is to consider these 
parameters and show how they influence thermal stability. 

2. The Statement of  the Problem 

A container, R, of arbitrary shape and rigid walls, 0R, is completely 
filled with fluid. The container is heated from the outside such that the 
temperature ~, is given on part of its walls, 0R', and the remainder part, 
0R", (0R = 0R' + 0R", OR' i 0) is heated with a known rate, Q. Both 
the functions ~Y and Q approach asymptotically values ~Y~ and Q~, respec- 
tively, as t--, r162 The functions g'~ and Q~ are independent of time but, 
of course, need not have the same values everywhere. 

In the absence of a body force, the temperature field in the fluid can 
be obtained from the Fourier equation: (o 

0T_~A~=0 
0t -- -- 

t 4 0: given 

~ I ~-n OR" 
t > 0: T = ~Y ; k aT 

OR' = Q 
o 

Since OR' was assumed to be different from zero, the field T approaches 
asymptotically a steady state, ~ which satisfies: 

[~ I 
AToo = 0 

= ~y=o �9 k ~7~ = Qoo 
OR' ' an OR" 
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Let __G be a time dependent body force acting on the fluid, and let G be 
conservative in the sense that it is a gradient of some potential. In this 
case the fluid cannot remain at rest unless the body force satisfies: 

0 

G x V T = 0 (2) 

When the above condition is not satisfied there is no adequate hydrostatic 
pressure [2 : w The condition (2) is not sufficient for the fluid to be 
in the rest state since it still may be unstable. In previous work the prob- 
lem was reduced to the investigation of the stability of the rest state with 
no cor~siderations as to how this rest state is reached (if it can be reached 
at all). 

An internal flow is likely to start at the beginning of the heating. More- 
over, the body force G satisfies the condition (2) only in an asymptotical 
manner; i. e, 

O 

G ~ x V T .  = 0 (3) 

therefore, the asymptotical behaviour of the flow, rather than the stability 
of the rest state, has to be investigated. This work investigates this a- 
symptotical behaviour. 

The results obtained are: 
i. The internal flow dissipates out and the res~ state is asymptotically 
reached if a certain relation between O_~ and xg Too - the criterion of the 
stability -oiS satisfied, regardless of the history of the asymptotic fields 
G__~ and V Too. 
2. a) When this relation does not hold, the internal flow cannot attain any 

small, time-independent asymptotical value except , possibly, the rest 
statej It is not shown that the rest state cannot occur. 
b) For G restricted to 

o 

G ~  = fi V To=, ~ = c o n s t a n t  (4) 

it is shown that the rest state cannot be reached unless the stability 
criterion holds. 

The asymptotic boundary conditions are time-independent; furthermore 
the stability criterion may be made not to hold by the addition of oar- 
bitrarily small c to one side of the relation, yet, when Go~ = /~ ~ Too, 
the asymptotical values of the flow field are either tLrne-dependent, 
or must be large. There is some indirect evidence [4] that the asymp- 
totical flow is time-dependent. Still the results for that case (the sta- 
bility criterion does not hold) leave much room for further investigation. 

3. The Basic Equations 

Let the basic equations (i) be made non-dimensional by the use of the 
following characteristic values: 

time 

h 2 i 

temperature acceleration velocity pressure 

vk 
h 3 

4Vf  
h 

Fig. I. Characteristic values 
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o o *) be introduced into the basic Purther~ let T = T + 8 and P = Pco + P 
equations which thus become: 

V.q_ :0 

D o 
~ t _ q  - p r l l 2 A q  + OG = V p  - (@G__ - TcoG__~) 

D p r - l l 2  BT0 - A 0  + q .  V T  = 0 ( 5 )  

t ..< 0 : given 0 and q 

I ~176 t > 0 q- OR = 0; 0 OR' = O; ~-n ~R" = 0 .  

I? 
P r  = ~, T h e s e  e q u a t i o n s  c o n t a i n  the P r a n d t l  N u m b e r ,  as  a p a r a m e t e r ,  

and  two n o n - d i m e n s i o n a l  func t ions :  the body  f o r c e  f i e ld  G, and  the t e m -  
p e r a t u r e  f i e ld ,  ~,  of the h y p o t h e t i c a l  r e s t  s t a t e ;  t h e s e  a r e  g i v e n  o r  c o m -  
p u t e d  b e f o r e h a n d .  

When the s o l u t i o n s  of the b a s i c  e q u a t i o n s  a p p r o a c h  t i m e - i n d e p e n d e n t  s t e a d y -  
s t a t e  they  m u s t  s a t i s f y :  

( 6 )** 

V - q _ o o  : 0 

(_%0' V)_q~o - p r l tYAqoo + O~G__oo : Vpoo 

(q_._~. V)0~o pr-1/YAOoo + q .  V~'~o = 0 

I 0• SOlo 
q~o_ 8R = 0 " 8R' = 0 " On OR" = 0 

and a l l  the o t h e r  t e r m s  v a n i s h  a s y m p t o t i c a l l y  

. Some Particular Integral Equalities 

The fo l lowing  i n t e g r a l  e q u a l i t i e s  a r e  d e r i v e d  f r o m  the b a s i c  e q u a t i o n s  
(5): ( the s u m m a t i o n  c o n v e n t i o n  is  a d o p t e d  e v e r y w h e r e )  

1 dj R I ]? i o qiq i  dV -- - P r  1/2 8qi ~ q i d v  . . . .  G tq idV (TGi  T~oGioo)qidV 
2 dt ROXj 8Xj R 

o 

= - -- --dV - 0qi  dV (7) 
2 R a 8xi OX i R 8x i 

Proofi" consider the scalar product of the momentum equations and q_, 

*) The existence of such a "hydrostatic pressure" which satisfies 

V~co = o pT~G_eo 

is guarranteed by the condition (3). 

**) Note that if the body force is restricted to satisfy (4), then the basic ectuations (6) can be further sim- 

plified by a new change of variables: 

c~k~ where ~ was used as scale to •. With this change of variables the basic equations look the same as 

Eq.(6) but G~equa ls  now V ~ .  
Restriction (4) is required in the proof of result 2 b). 
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and the p r o d u c t  of the e n e r g y  equa t ion  and O. I n t e g ra t i on  o v e r  the whole 
r e g i o n  R,  the use  of G r e e n ' s  t h e o r e m  and the b o u n d a r y  cond i t i ons  l e ad  
to E q . ( 7 ) .  The fo l lowing  e q u a l i t i e s  a r e  i n t e r m e d i a t e  s t e p s .  

1) 

J t 02qi I 0qi q i A q i  dV = q i - - d V  = qi  n .dS  + 
R OxjOxj aR ~Xj ~ 

t 3q i Oqi 
- dV 

a 0Xj 0xj 

B e c a u s e  q l 0 R  = 0 this  l e a d s  to: 

I J Oqi Oqi q .  A q d V  = - dV 
R-- -- R 0Xj Oxj 

21 a2o 80 

I  0d :I s 
R R OX i~Xi ~R OXi 

3 0  3 O 
r dV 
JR 3x i Ox i 

~ I 1 Because 3R' = O, ,-a---n i 
Ox i OR' 

~ OAOdV = _ ~ 00 ~0 
R R 0X i 0X i 

= 0 and OR = OR' + OR" this leads to: 

dV 

3) 

I I 3qj 1 I O(qj q j) [ ( q . V ) q ] "  q d V  = q i - -  qj dV = -  qi dV 
R �9 R 3 x  i 2 R 3 x i  

l~ 11 3ql 
=- - qiqj -- dV 

2 ~a qJqJqinidS 2 R Ox i 

B e c a u s e  V .  q - 
3qi 

Ox i 
- - -  0 and q]l = 0 this  l e a d s  to: OR I 

] [ (q .  V)q_].q_ dV = 0 
R 

4) 

jR oo lfo 0 q .  V0 dV = 0qi  G dV = 2  qi ~ x  i dV 

= l f ~  02qinidS _ f  02 ~ q i d V  
2 R a 3X i 

Because q-13R = 0 and V. _q = 0 this leads to: 
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VOdV = 0 @q. 
R 

5) 
8 

I I R - 8 t -  R 8t 

6) 

8-- 8 dV = - -  82dV 
R at 2 dt R 

The addition of the two equalities (7) yields: 

i d 

2 dt ]R 

1 d t 
| qi qi dV 

2 dt JR 

+ p r  1/2 

(02 + qiqi)dV = [ ~  (pr-i/2 88 aO + 
[ a  R ax i a x  i 

O 

_ f (o ,] 
aXj a X j /  R a X i /  

f o (% Gi=l + (} o . . . .  Too qidV + 
R 8xj 

R (~Gi o - T= Gi~)qidV (8) 

If the field G satisfies the additional restriction (4) then the solutions 0 
and _q m u s t  a l so  sa t i s fy :  

/aO~2 8qi] dV --qj --dV - -- qi + = - dV + 
Ot Ot J R axj 8t R at axi 

1 d [ IR ( P  -1/2 80 80 

2 dt axj axj axj a x j /  8xi / 

]~ OTaq~ j ao 8 o o ]R o o aq~ 
- 0(G i G i ~ ) - - d V  - q i - - ( T  - Too )dV - (TG i - T~Gioo)----dV 

R at 8X i at (9) 

8 Proof." C o n s i d e r  the s c a l a r  p roduc t  of the m o m e n t u m  equa t ions  and -~q. 
a0 and the p r oduc t  of the e n e r g y  equa t ion  and -~--. I n t e g r a t i o n  ove r  the whole 

r eg i on  R, the use  of G r e e n ' s  t h e o r e m  and b o u n d a r y  cond i t ions  l ead  to Eq. (9} 
Some i n t e r m e d i a t e  s teps  are :  

i) 
8q 8qi 82qi 82qi 8qi 

- S 8t -- a Ot 8xjax] 8x jar 8xj 

= - ] d V  - 
R 8xj 8t \ a x /  

1 d 8qi 8qi f 
2 dt -JR OXj DXj 

- - d V  

- -  d V  = 
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8c 1 1 d ~ 8qi 8qi 
AqdV .... 

R at 2 dt a 8xj 8xj 
dV 

Like wise 

2) 

80 1 d 80 80 

R at 2 dt 8:,: i 8>:i 
dV 

Because G satisfies the restriction 4) 
O 

G i ~  + -- --q dV - @ i~ + 
at at 8x i 2 at 

O 

8T,~ qi dV 
axi/ 

(see the note on pg. 56) 

Half of the time derivative of equality (8) is now substracted from Eq. 
(9) to yield: 

i d2 ~ ~ [(a~ 8qi aqi] ~ ~ i~li JR (90 :gG 
(02 + q i q i ) d V  = L~-- / + - -  �9 d V +  q j - - d V +  - - q i ~ d V  

4 dt  2 R R at at J R 8xj at Oxi 

----- @ (G i - G i ~ )  +,, 
2 dt 8x i 

8@ 
+ ~R O(Gi- Gi0o) S q i d v + ~ - - q i  

at at 

so_o } 
- T ~  q i d V -  (TG i T ~ G i ~ ) q i d V  + 

R 

8qi 
(~ - ~)dV + IR (~Gi - ~ Ci~) dV 

8xi  8xi  
( lo) 

5. Some General Inequalities 

i. Let (C. B. S. ) denote the Cauchy-Buniakowsky-Schwarz-inequality 
[8: ~i] 

II~ ~:f2dv j~ (~R ~:~ d~) lj2 (~:~ d~) :j2 

(the existence of the integrals on the right hand side is assumed in this 
section) 

2. Let (H) denote the H01der-inequality [i0 : ~i] 

I ~ ,~:~ .... ~, ~v p.~ (~ ~p,: ~v) ~ ( S ~ v / 1 ~  ..... (~ ~n~ ~}  ~ 

where Pl , P2 . . . . . . . . .  Pn are all positive and satisfy 

1 + 1 + 1 
Pl P2 Pn 

= 1 
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3. L e t  (L) d e n o t e  the i n e q u a l i t y  

(j \ I/2/_ a f i  a f i  V) 3/2 
f f dV fifidV) d 

R 1 1 R R OXj OXj 

4. Let (F) denote the inequality 

8f 8f 
~Rf2dV ~ C2 ~R dV 

ax i a x  i 

where f vanishes on 8R' and has a vanishing normal derivative on 3R" 
The (F) inequality is a consequence of the existence of the lowest eigen- 
value )tl, of the Helmholtz equation with mixed boundary conditions 

: x x v  

ff + = 0 

n 2 aR 

where c~ and /3 are point functions defined on 8R. 

6. Some Elements of Functional Analysis 

6.1. A real Hilbert Space E is  d e f i n e d  as  a c o m p l e t e  n o r m e d  r e a l  l i n e a r  
s p a c e  wi th  a s c a l a r  p r o d u c t ;  i . e ,  a c o l l e c t i o n  of e l e m e n t s  x, y0 z . . . .  w i th  
the f o l l o w i n g  p r o p e r t i e s :  

Linearity a) F o r  a n y  two e l e m e n t s  x , y r  E the s u m  x + y  r E i s  d e f i n e d ,  
a n d x  + y  = y  + x  ; F u r t h e r m o r e  f o r  x , y , z  c E 

x + (y + z) = x + (y + z) .  
b) F o r  a n y  r e a l  n u m b e r s  X a n d  # the e l e m e n t  X x e E  i s  d e f i n e d  

f o r  e v e r y  x c E ,  a n d  X(x + y) = Xx + Xy ; X(t~x) = (Xp)x; 
(X + p)x = Xx + t~x. 

c) T h e r e  e x i s t s  a u n i q u e  e l e m e n t  Q s u c h  tha t  Q x = Q a n d  
Q + x = x for every xr 

The norm 
d) There exists a real valued non-negative function (called the 

norm) defined on E and denoted by II ~ such that ~)txll = 
= Ikl.Ilx] for every real )t and xcE (therefore [IQ[I = 0), 
IIx~ > 0 if x ~ Q and fix +y~ g llx~ + ~Yll (triangle inequality) 
for every x, yCE. 

Completeness 
e) If x l ,  x2 . . . . . .  i s  a s e q u e n c e  of e l e m e n t s  of E s u c h  tha t  

lira ~x n Xrn][ 
1T1, I 1 - ' ~  

then there exists an element xoeE (necessarily unique) such 
that Xu----~ x o ; i.e., 

lira - XoJl = o 
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(as usual x-y means x + (-l)yeE) 

The scalar product 
f) There exists a real-valued function (called the scalar product) 

defined on ExE and denoted by < ; > such that <x;x> = IIxJl2 
and <x ; y> = <y ; x> for every x, yeE ; furthermore, 
4Ax I + ~x 2 ; y > = X<x I ; y) + ~<x 2 ; y~ for all real 7t, /~ 
and x, ycE. The scalar product also satisfies <x;y>gIIx~ "IlYU, 
which results from the previous definitions. 

If a space E satisfies all the requirements but (e), it is not complete. It 
is always possible to adjoin new elements to E and to define for these new 
elements the algebraic operations, the norm and the scalar product (without 
altering them for the original elements of E) in such a way that the re- 
sulting collection of elements (called the completion of E) satisfies a)-f); 
furthermore, for any new elements Z there is a sequence Xl, X 2 ..... in 
E, which converges to Z. 

A set S, ScE and E complete, is defined~,as dense in E if every element 
z, zeE, is the limit of a sequence Ixn(SJ. 

A Hilbert space is completely defined by any dense set of it and the 
scalar product (which actually, defines the norm). In any particular sit- 
uation, the new elements may be of a character quite different from the 
original elements of E, in the same way, e.g. as the completion of the 
rational numbers leads to the real number system. 

The Hilbert space E I is said to be embedded in the space E2, EIcE2, 
if the same set S is dense in both E 1 and E2, and, in addition, there 
exists a positive e such that 

I HE2 e l  lIE1. 
Obviously, this means that every element of E l is an element of E 2. 

If EICE 2 and also E~cEI, both the spaces E 1 and E 2 contain only i- 
dentical elements. The norms in El and E2 are said to be equivalent 
[9:  i12]. 

In the following considerations the elements of the Hilbert spaces will 
be either scalar or vectorial fields (point functioas) defined on R, or ordered 
pairs of such fields. 

The Hilbert space L2 consists of all functions which are square integrable 
over R. The linear operations are defined in the usual way (addition of 
functions and multiplication by numbers). 

The scalar product and the norm are 

< fl ; f2 > = ~R flf2dV 

II f II : f d V  
L2 

R 

The set C ~ of all infinitely differentiable functions is dense in L 2 
: 

The Hilbert space L 2 is the vectorial counterpart of L 2. The scalar 
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p r o d u c t  and,  r e s p e c t i v e l y ,  the n o r m  a r e  de f ined  by: 

The Hilbert products space L 2 x L2 ; i.e, the space whose elements 
are ordered pairs (u, L U) with u eL 2 and UeL2, is denoted by ~o In ,~ the 
scalar product and, respectively, the norm are defined by: 

f 
< ( u j  

The se t  ~ = C ~ x r  i s  d e n s e  in ~ .  

U) ; (V, V)> = IR (uv + UiVi)dV 

]l(U, lJ)[@ =( fR(U2  + U i U i ) d V )  1/2 

Let c be any positive constant and let a new norm be defined 

li(u, g)ll o = + 
R 

The completion of ~= in the new norm leads to the Hilbert space denoted 
by 2 r  

Since this  new n o r m  van e a s i l y  be p r o v e d  to be equ iva l en t  to the o the r  
one the s p a c e s  s and s con ta in  only  iden t i ca l  e l e m e n t s .  

8% 
6 . 2 .  Generalized Derivatives in Hilbert Spaces Let D~p denote 

ax~ axl~ a43 

E1 + f2 -+ ~3 = f ; the  funct ion  r is c a l l e d  the g e n e r a l i z e d  d e r i v a t i v e  of the 
type Dr{0 of a func t ion  9 in R, if t he r e  e x i s t s  a s e q u e n c e  of func t ions  (0m, 
I t i m e s  c o n t i n u o u s l y  d i f f e r e n t a b l e  ins ide  R, such  that  ~0rn and Dl~0m a r e  
c o n v e r g e n t  to q0 and r r e s p e c t i v e l y ,  in any d o m a i n  R r s t r i c t l y  i n t e r i o r  to 
R, the convergence has to be in the L 2 norm. 

Henceforth, all derivatives will be interpreted in the generalized':sense. 
The properties of the generalized derivatives, in particular, the cdincidence 
of the generalized derivative and the usual derivative, when thiS latter exists, 
w e r e  p r o v e d  in [9 : w  [10 : w  

The H i l b e r t  s p a c e  W 2 c o n s i s t s  of al l  func t ions  ~o which a r e  m e a s u r a b l e  
on R,  have d e r i v a t i v e s  Dk~0 of al l  o r d e r  k ~ i~, and a r e  such  that  both the 
funct ion  and al l  t he se  d e r i v a t i v e s  a r e  s q u a r e - i n t e g r a b l e  o v e r  R.  The s c a l a r  
p r o d u c t  and the n o r m  are :  

I ai~ ~i~ 

�9 = ~R . dV < ~o ~P > ax~lax~%xa ~-2  ~ -2  , - . i3 ~ i l  nvi20X~3 

i = 0 , 1  . . . . .  2 
II II w*2 = (< v ; v >)1/2 i l  + i2 + i3 = i 
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The  s e t  C ~ is  d e n s e  in W{.  M o r e o v e r ,  if  ~1,  (P2 . . . .  i s  the c o n v e r g i n g  
s e q u e n c e  of  90 t h e n  D k ~ l ,  Dk~2 . . . . . .  is  the  s e q u e n c e  w h i c h  c o n v e r g e s  
to Dk~o f o r  a l l  k ~ # [9 : w  

T h e  H i l b e r t  s p a c e  W{ is  the v e c t o r i a l  c o u n t e r p a r t  of  WI2; The  s c a l a r  
p r o d u c t  and  the  n o r m  in  WI2 a r e :  

IR 0ir 0i*J 
< r ~ > = . i l -  i2 i3 Oxi11- i9.- i3 dV  

o x  1 i~x 2 Ox 3 ox  2 i~x 3 

i = 0, i .... 
i I + i n + i 3 = i 

L e t  the s p a c e  I~ ~ d e n o t e  the  p r o d u c t  s p a c e  W {  x W~. In  th i s  H i l b e r t  s p a c e  
the  s c a l a r  p r o d u c t  a nd  the  n o r m  a r e :  

I(v, _~)i~i = (<(v, _~); (~, _~)> )i/2 
The  s e t  ~ is  d e n s e  in t8 ~, M o r e o v e r ,  f o r  a n y  e > 0, the c o m p l e t i o n  

of  D ~ in the  f o l l o w i n g  n o r m :  

leads to a Hilbert space ~. Both ~g and /2• have identical elements only, 
since the two norms are obviously equivalent, 

C~R is defined as the set of ali functions which belong to C I and vanish 
on the boundary OR C81R , is defined as the set of all functions which belong 
to C 1 and satisfy the following boundary conditions: 

OR' = 0 ; ~ OR" = 0 

Both C~R and C~R, are subsets of C 1 ._ C~R is defined as the set of all 
functions-w~ich belong to both C~ ~nd C~f C~. is defined as the s~t of 
all functions which belong to both C and C 8R' The Hilbert spaces W2 OR 
an W 2 " ~ ~ " " ' ' " d 12,8R' �9 obtamed from C~R and C~R, , respechvelx by complehon m 
the W 2 norm, are obviously embedded in the space W~. In these spaces 
Green's Theorem holds and, therefore, the functions from W72, OR and 
W~, OR' satisfy homogeneous boundary conditions [9 : w in the sense 
of Green's Theorem; i.e. 

2 2~j 

(b. dV  = qo ~ d V  = - ~ d V  
Ox ~'Ox'1 Ox iOx i Ox i Ox i 

The Hilbert space W{ 8R and W~2 8R' are vectorial counterparts of Wi2 OR 
and W~, ~ ,  respectively. Green's' Theorem 

f Cv._, dV = - e,v. CdV IR I ~ -  - 

t "I, 
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holds in this space 

Let 2J18 denote the product space W{, DR' x W~2, 8a- In this space the 
following equality is ~he equivalent of Green s Theorem. 

82 w 0 2 ~ i ~  
(9 At0+ r  Af2)dV = ~ + ~ i - - d V  = 

- -  -- OXiOX i OXjOXj/ 

= [JR +-- dV = 
i OXi 0Xj  OXj / 

= IR (~0A~) + _9. A_~)dV 

T h e l s p a c e s  DSR and, r e s p e c t i v e l y ,  DaR, a re  ob ta ined  f r o m  the s e t s  C~R 
and Can, by comple t i on  in the fo l lowing n o r m -  

8x.  8x. / 
1 1 

DOR and Dan, a r e  H i lbe r t  space s  with the s c a l a r  p r o d u c t  def ined  by: 

S a~ a~ 
<q0 ; ~b> : - - ~  dV 

R 8x i 8X i 

a9 deno tes  the H i lbe r t  p r o d u c t  space  D~R, x DSR, where  D~R is the v e c -  
t o r i a l  c o u n t e r p a r t  of D dR. In the n o r m  and the s c a l a r  p r o d u c t  a re :  

< ( v ,  _r (< E) = + d V  
i Oxi ~x i Oxi/ 

II(~, r : (< (~, _~) ; {~, i)>)I/2 

~) and %Y~ consist of identical elements. Since both the spaces ~ and 
%Y~ are product spaces it is enough to prove that the component spaces 
have identical elements. 

Proof: T h e  s p a c e s  DSR, and W~ 8 ' c o n s i s t  of i den t i ca l  e l e m e n t s  s ince  
~oo is dense  in both DSR, and ~ , S R '  ~ and,  in addi t ion ,  the n o r m s  a re  
equ iva len t .  

w2, ~R' Oxi ~ x i /  (F) R ~X i ~X i aR' 

: d V  ..< + -- d V  - I1~o[ W { , a R ,  

OI' 
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The p r o o f  fo r  the v e c t o r i a l  p a r t  goes  a long  the s a m e  ] ines .  

The se t  S c o n s i s t  of a l l  s m o o t h ,  s o l e n o i d a l  v e c t o r s  which v a n i s h  on OR. 
The c o m p l e t i o n  of S in the L 2 n o r m  is deno ted  by L2 ,  s .  

In L2 ,  two v e c t o r s  a r e  sa id  to be o r t h o g o n a l  if t h e i r  s c a l a r  p r o d u c t  
v a n i s h e s .  The o r t h o g o n a l  c o m p l e m e n t  of L2,  s ( i . e ,  the se t  of al l  v e c t o r s  
r which  be long  to L2 and a r e  o r t h o g o n a l  to e v e r y  _r162 L2 ,  s) c o n s i s t s  of 
~btential v e c t o r s  [11 : w and is deno ted  by L2 ,  p . 

L e t  H denote  the c o m p l e t i o n  of S in the D n o r m .  The p r o d u c t  space  
DOR, x H is deno ted  by Z. By def in i t ion ,  the n o r m  and the s c a l a r  p r o d u c t  
in Z a re :  

J - ' - R ~ x  i a x i  a x j  a x j /  

In this  s p a c e  an o b v i o u s l y  equ iva l en t  n o r m  can  be i n t r o d u c e d :  

. ~*~t~11r ~ ) ~/~ II(~o, r : (~-~/~  I1~1t D3~, - 

The space Z normed in this way is denoted by Z c . For ~ = Pr the space 
Z~ is denoted Z pr. The stability problem is investigated in this space. 
The first element ~ in ((p, ~)c Zpr may be thought of as a temperature 
field which "vanishes" on OR' and has "vanishing normal derivative" on 
0R". The second element in (~0, _~) represents a velocity field which "vanishes" 
on 3R. 

6.3, Embedding Theorems:  The fo l lowing e m b e d d i n g  t h e o r e m s  a r e  e i t h e r  
p a r t s  or  d i r e c t  c o r r e l a r i e s  of Sobolov  E m b e d d i n g  T h e o r e m s  [9 : ~ 114] .  

,g i -1  1 o = L W 2 c W 2 c . . . . .  c W 2 c W 2 2 

1 o -- L W ~  c W -~ c ..... a W 2 c W 2 2 

tY 1 c Z / - 1  c . . . . .  c ~ 1  c ~ o  =- 

The s p a c e  ~ is e m b e d d e d  in s  
Al l  the e l e m e n t s  of ~ a r e  i d e n t i c a l  with those  of ~ .  ~Y~ is  a p r o p e r  
s u b s p a c e  of ~A "1, which  is e m b e d d e d  in J~ 

a - ~ c ~ ,  c ~ . 

The s p a c e  H is e m b e d d e d  in DaR: 
The n o r m  in both H and DaR is the n o r m  of D, the e m b e d d i n g  fo l lows  
f r o m  the fac t  that  S is a p r o p e r  s u b s e t  of D0R ( v e c t o r s  in both S and D0R 

I 
have  c o m p o n e n t s  in CaR but only s o l e n o i d a l  v e c t o r s  a r e  in S). 

~lhe s p a c e  Z is e m b e d d e d  in ~ s ince  they both have "DaR' as f i r s t  c o m -  
ponent ;  the second component of Z, is embedded in D3R' , the second com- 
ponent of ~. 

The embedding of Z in ~ follows from the embedding of Z in ~ and the 
embedding of ~ in ~. 
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The  s p a c e  H is e m b e d d e d  in L2 , s  : 
The  s e t  S is d e n s e  in bo th  H and  L 2 , s ,  and  

[_ lll -- [ dV [ -- i e. the conver-  
JR 8xj 8xj JR 

gence in H follows from the convergence in L 2. 

6.4. Operators in Hilberts spaces: L e t  E 1 and  E 2 be H i l b e r t  s p a c e s  and  
le t  S be an  a r b i t r a r y  s e t  of  E 1. T he  s e t  of  o r d e r e d  p a i r s  {(x, A x ) ) ,  x c S  
and  A x e E2 ,  d e f i n e s  an  o p e r a t o r  A f rom E1 to E 9. if  t h e r e  e x i s t s ' n o p a i r  
in the s e t  h a v i n g  i d e n t i c a l  f i r s t  e l e m e n t  and  d i f f e r e n t  s e c o n d  e l e m e n t .  The  
" d o m a i n "  of  A is j u s t  the s e t  S and  the " r a n g e "  of  A is  the s e t  of  a l l  
e l e m e n t s  in E2 of  the f o r m  A x, x c  S. If E1 is the d o m a i n  of  A the o p e r a t o r  
A is  s a i d  to be  d e f i n e d  on  E l ;  if, in  a d d i t i o n ,  the s p a c e s  E1  and  E 2  a r e  
i d e n t i c a l ,  A is  s a i d  to be an  o p e r a t o r  in E 1. 

The  o p e r a t o r  A is  s a i d  to be bounded i f  the i m a g e  of  a n y  b o u n d e d  s e t  
in E 1 is  a b o u n d e d  s e t  in E2;  i . e ,  x n c S  and  ]]Xn[[ < M i m p l y  [IAxn[[<N 
w h e r e  b o t h  M a nd  N do no t  d e p e n d  on n. 

The  o p e r a t o r  A is  s a i d  to be continuous at XoC S if  the i m a g e  of  a n y  
s e q u e n c e  [AXn t w h i c h  c o n v e r g e s  to AXo; i . e ,  if  l i m  ] [ x a -  Xo[[E 1 = 0 

11-----~ OO 

then  l i ra  ]lAx n - A X o ] E 2  = 0. T h i s  k ind  of  c o n v e r g e n c e  is  s o m e t i m e s  
n . - - - >  o o  

c a l l e d  s t r o n g  c o n v e r g e n c e  and  d e n o t e d  by ===~. S ince  no t  o t h e r  k ind  of  c o n -  
v e r g e n c e  is  u s e d  in the p r e s e n t  w o r k ,  the t e r m  s t r o n g  is  o m i t t e d .  

O p e r a t o r s  w h i c h  a r e  c o n t i n u o u s  on e v e r y  p o i n t  of  E 1, a r e  s i m p l y  c a l l e d  
c o n t i n u o u s  on E 1. 

A b o u n d e d  s e t  S c  E l ,  i s  c a l l e d  compact in  E1  i f  any  s e q u e n c e  of  e l e m e n t s  
(xncS } contains a subsequence which converges in the norm of El. The 
operator A is called comDact on a set S cEI, if it takes every bounded 
subset of S into a compact set in the space E 2. An operator which is con- 
tinuous and compact on S CE I, is called completely continuous on S. 

The operator I is called the identity operator in E if the image of every 
element x c E is the element x itself. Moreover, if E 1 c E2 then the identity 
operator I on E l to E 2 is defined and it takes every element x ~E I to the 
same element x which is now regarded as an element of E 2. 

J The  i d e n t i t y  o p e r a t o r  I on W 2 to L 2 is  c o m p l e t e l y  c o n t i n u o u s  [9 : w 
Both the identity operator on W~ to L 2 and the identity operator on f 
to o~ are completely continuous, because these spaces are products of a 
finite number of W 1 or respectively, L 2 spaces. 

The  o p e r a t o r  A is  c a l l e d  distributive on E if  

A ( k x  + /~y) = k A x  + /~Ay,  

for all x,y eel, and all real numbers k and /J. An operator which is both 
distributive and continuous is called linear. 

Theorem: The distributive operator A is linear if and only if there exists 
a c o n s t a n t  C s u c h  tha t  [[Ax[[ ..< C 2 IIxll f o r  a l l  x e E  1 [9 : $ 9 7 ] .  The  i n e q u a l i t y  
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I/Axll < c ~ Irxll g u a r a n t e e s  A to be  b o u n d e d .  

Let A be a linear operator; if there is bounded operator B such that 
AB : BA = I, then B is called "the inverse of A" and is denoted by A-i 
The inverse operator is linear [9 : 5127]. 

The set of all linear operators on E 1 to E 2 is a Banach space (satisfies 
a) to e) in the definition of Hilbert spaces) usually denoted E 1,2 [9 : 5 104] . 
The norm of a linear operator, which is an element of E 1,2' satisfies: 

IA x II 
IIAII = sup  = sup  IIA xl l  = sup  IIA x It 

XCgl 11 xll x s El.]Ix [[41 x s EI.lX[I=I 

Theorem [9 ; w : L e t  A be  a l i n e a r ,  c o m p l e t e l y  c o n t i n u o u s  o p e r a t o r  in  
E;  t h e n :  
a) T o  e v e r y  g i v e n  G c > 0, t h e r e  e x i s t s  o n l y  a f i n i t e  numbe r "  of  v a l u e s  X, 
IIMI < G  s u c h  t h a t  the  e q u a t i o n  A x  + k x  = 0 h a s  a n o n - z e r o  s o l u t i o n .  
T h e s e  s o l u t i o n s  a r e  c a l l e d  e i g e n v e c t o r s  of  A a n d  the  c o r r e s p o n d i n g  k a r e  
c a l l e d  e i g e n v a l u e s .  

C o r r o l a r y  of  a):  T h e  s e t  of  a l l  e i g e n v a l u e s  i s  a t  m o s t  c o u n t a b l e .  
b) T h e  o p e r a t o r  (A - k I )  -1 e x i s t  f o r  a l l  r e g u l a r  v a l u e s  of  M a l l  v a l u e s  of  
k wh ich  a r e  n o t  e i g e n v a l u e s ) .  
c)  If ,  in  a d d i t i o n s ,  the  o p e r a t o r  A i s  s y m m e t r i c ;  i . e .  

< y ; A x  > = < A y  ; x>  f o r  a l l  x ,  y e A ,  

then there exists at least one eigenvalue. Moreover, the highest eigenvalue 
satisfies: 

I x* l  = sup  <A x ; x >  = n All 
xch;~xll=l 

A linear operator from E 1 to E 2 is Called a linear functio~Tal on E l if 
E 2 consists of all real numbers. 

R i e s z '  Theorern[ll: ~ 3]: E v e r y  l i n e a r  f u n c t i o n a l  1 on  E c a n  be  w r i t t e n  
a s  a s c a l a r  p r o d u c t  of  a c o n s t a n t  e l e m e n t  x i c E  a n d  the  e l e m e n t  x c E  
i . e . ,  

l(x) = <x i ; x> for all x eEl; 

the element x I is unique. 
An operator b acting on E1 x E2 to the real numbers system is called 

a bilinear functional if for every y, y EE2 the operator is a linear func- 
tional on E l and vice-versa, for all x c E l the operator is a linear func- 
tional on E 2. Bilinear functionals are bounded operators because [b(x, y)]..<C 2 
[Ixil II yIl, for all (x, y) c E 2. The smallest value C 2 for which this inequality 
is still valid is called the norm of b,  [Ib][. 

II b I1 = s u p  I b (x ,  Y) I 
II x tl =1, II y II =1 

From Riesz' Theorem follows [9 : w that each,, bilinear functional 
defines a unique linear operator A (or its conjugate A"') given by: 

b(x ,  y )  , < A x  ; y >  = < x  ; A":"y> 
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(the last equality is the definition of the conjugate o p e r a t o r  A":"). M o r e o v e r ,  
the inverse is also true: every linear operator A defines a bilinear functional 
by means of the same expression. 

A bilinear functional is called symmetric if 

b(x, y) = b(y, x) 

The operator defined by a symmetric bilinear functional is, of eo~rse, sym- 
metric. 

6.5. Freche t  Derivat ive  of  Operators [12 : 1 w 3.3] : L e t  A be a n  o p e r a t o r  
on E 2 to E ; if, a t  t i le  p o i n t  XoeE 1 

A(x o + h) - A(x o) = A~h + Ar(h ) 

w h e r e  A l i s  a l i n e a r  o p e r a t o r  on h < E 1 ,  a n d  

l[i~(h)]l 
lira - 0 

bb*o nha 

then A,~h is called the Frechet differential of A at the point x o �9 E i, and 
Ar(h) is called the remainder of the differential. The Frechet derivative 
of the operator A is denoted by A'. It is the operator from E I to E 1,2 
which takes elements xeE I, on which the Frechet differential is defined, 
to corresponding linear operator A~E 1,2. For clarity two examples are 
given: 
E)cample 1: Let A be tile operator defined by 

By d e f i n i t i o n ,  f o r  e v e r y  t o e  C 

A~ = (h~C,  3fo  hi} ~A~  --{(h~C, afo h~ 

i . e .  the  f u n c t i o n  3 f o 2 h c C  i s  the  F r e c h e t  d i f f e r e n t i a l  on fo in  the  d i r e c t i o n  
of  h,  a n d  the  o p e r a t o r  

{ o } o = h ~ C ,  3 f  h 

i s  the  d e r i v a t i v e  of  A on fo" T h e  d e r i v a t i v e  of  A i s  the  o p e r a t o r  A '  

A ~ = { ( f ~ c ,  ( h ~ C ,  afo~h))} 

Example 2: L e t  A be  d e f i n e d  on H by:  

A -- {(z~ n, i v .  v)_v)} 

By definition, on _VoeH 

I A~ = {(h~H, (_Vo .v)_h § (h. V)Vo)} 

A r = { ( h e l l ,  (}!" V ) h ) }  

The Frechet derivative of A is the oper'ator A' 

A '  = {(_VcH, ( i2<H,  (L~. V)l~ -+ (t 2 �9 V)V))} 
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The Theorem of Hildebrand and Graves: L e t  B be an  o p e r a t o r  t a k i n g  p a i r s  
(x, y) ,  x e E 1 ,  y e E  2 in to  a s p a c e  E 8. F u r t h e r ,  s u p p o s e  t h a t  B (Xo, Yo) = Q 
for some (Xo, Yo), that B is continuous with respect to (x, y) in some 
neighborhood of (Xo, Yo), and has in that neighborhood a (partial) Frechet 
derivative with respect to x which is continuous in that neighborhood with 
respect to (x, y); let B at the point (Xo, Yo), have a linear inverse operator. 
Then, in the neighborhood of (Xo, Yo), the equation B (x, y) = Q has a 
unique solution for every y [12 : 5 w 

7. Intermediate  Resul t s  

TheoTern: L e t  ~ e H  be g i v e n ,  and  let (tp, ~), (O), r  

= i q0 ~2.~ dV d e f i n e s  a b i l i n e a r  f u n c t i o n a l  on Z x Z .  
d R 

The integral b I = 

Proof: T h e  d i s t r i b u t i v e  p r o p e r t i e s  w i th  r e s p e c t  to e a c h  of the  ? l e m e n t s  
(~0, _~) or (qo, @) is obvious. To prove the boundedness consider* 

B y  a d d i t i o n  of  p o s i t i v e  t e r m  to the  r i g h t  h a n d  t e r m ,  t h i s  becomes: ' ;~;;Q 

Because  Z CZ (1t Iz 

1/4 ~ll3/4 1/4 II~II L I _ .  l(tO, s  l(tO, !)~/4 (lla) 

..< c~ ][Z )' and  [2 is a fixed p o i n t ,  t h i s  yields 

I ]R  ~ 2 . q ~ d V  ~<C 2 l(m, _.#)II~ e l(tO, _~)llz ~ o i l (m,  r _~)II z (~2) 

I t  i s  i m p o r t a n t  to n o t e  t h a t  e v e r y w h e r e  in t h e s e  i n e q u a l i t i e s  the e l e m e n t s  
(~, ~) and (tO, ~) are interehangable: 

(~b) 

Theorem: L e t  _~cH be g i v e n  and  l e t  (% ~)," (tO, _r T h e  i n t e g r a l  

*) In proofs, the domain of the integration, always R, and the volume element will be omitted. 
~< means, from (H) inequality etc. 

(H) 
**) All constants arc denoted by the same C as long as their numerical values are irrelevant. 
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b2 = ~R ~f2.V ~0dV is a bilinear functional on ZxZ. 

.Pro@ The  d i s t r i b u t i v e n e s s  with r e s p e c t  to e a c h  e l e m e n t  (% r or  (%o, p) 
is obvious. To prove the boundedness consider: - -- 

Oqo dV < 4 1/4 4 1/4 1/2 

I I 

(L) i \j< ~X k 

The  add i t ion  of p o s i t i v e  t e r m s  to the r i g h t  hand  t e r m  g ives :  

fe, [ 3/4 [3/4 , a/4 

B e c a u s e  Z c . r  and ~ is a f ixed e l e m e n t  then  

i. e, b 2 is bounded �9 

Now, f2eIlmeans f218Rl 
is skew symmetric 

= 0 and V �9 ~_ = 0; t h e r e f o r e  the bilinear functional 

f 9 ~ . V q o d V  = - ,~R ~ -  V g d V  
R 

i. e, (~, __r and (~O, ~) a r e  i n t e r c h a n g e a b l e .  

I IR I C 2 ~ I I  1/4 3/4 1/4 3/4- ~ Q ' V t o d V  ~< II(~, r I[E1%2 [~  ~ U(~ o, O)Ua 11(~, +)nz (15) 
i - -  Z - -  ~ - -  

The e l e m e n t  f2eH can  be c o n s i d e r e d  an e l e m e n t  of Z,  (~oo f2)eZ,  with 
a r b i t r a r y  ~0�9 dR' �9 With this  i n t e r p r e t a t i o n  i n e q u a l i t i e s  13) and 15) b e c o m e :  

] ~ a 9  f2" V~0dV I x < C2 I](%% r  11(9, !)ll3z/4 I1(~, ~)11~/4 II(q ), f2)~3z/4 ~(~, s z 

(16) 

Ifl  I c2 lj4 <v 2 V~dV ..< It(w, r II(v, -~)lle t1(~, I1(~, ~t l IP 11(~,s '% 
(17) 

CorroZa<v: The integ~'a~ b3 = ~ i"  [(2" V)r dV defines ~ b m n e a r  f.~letion~l 
J~ 
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fu nc t i ona l  on Z x Z ,  b e c a u s e  b 3 is a sum of f in i te  n u m b e r  of b i l i n e a r  f u n c -  
t i ona l s  of the f o r m  of b 2. 

The following inequalities are direct consequences of the definition of 
and the properties of b 2, Eqs.13) ~.' 17): 

]~ . . . .  r [(~. v~_] dV ] 4 C ~ I1(~, r 11(~, r II _~ll ~/4,~ U _,,a ~/4 11(~, ~_)11 
i8) 

] _r ~(-a.v)-ddV -< c ~ ~(,~. _r I1(~o, • 
R 

i9) 

~ " ~ / nl/4 I1(~, ~)113~/4 r  [(f2 V)~_] dV -,< C Z I1(~, _r 1-~11,~ - 
20) 

]R -r [(-Q" V)6'] dV-.< C 2 11(% _r It(<% _r '4 lib, ~/b'1/4 I1(~, _~)113~ '4 g~._~)ll 
(2 i )  

~R ~) 1/4 3/4 1/'4 3/'4 __r < C s II(~, _r II(~, _ I I ,  Ii(~, a__) z I1(~o, ~)11~ I1(~o, ~)l lz 

(22) 

T he or e m:  L e t  K~ be the l i n e a r  ope r ' a to r  a s s o c i a t e d  with the l i n e a r  f u n c -  
t iona l  

j o 
- ~ 0 G . _ C d V  - { ' V  T , , ~ d V  

R 

i.e, f o r  all ((9, _r (~p, _~)eZ 

I I o <(~, _r K (~0, ~)> = - ~pG. r  - ~_-V T~ 9 d V  
R R 

(23) 

then,  K 2 is c o m p l e t e l y  continuous. 

Proof:  The c o n t i n u i t y  of K,[ fo l lows  f r o m  i ts  l i n e a r i t y .  To p r o v e  the c o m -  
p a c t n e s s  l e t  S, S c Z ,  be a bounded  se t ,  and l e t  {(~o n, ~n)} be a s e q u e n c e  
of e l e m e n t s  in S. B e c a u s e  Z c  f)ct.Y12, this  s e q u e n c e  can  be c o n s i d e r e d  

�9 1 �9 - 1 a s e q u e n c e  in tYe. The  i den t i t y  o p e r a t o r  on r to s is  c o m p e c t  and 
t h e r e f o r e  the seque~nce ~(t)n, all) C ~ l  ~ c o n t a i n e s  a s u b s e q u e n c e  which co n -  
v e r g e s  in the n o r m  s f l o rm  ( s e e  w  ). 

F o r  s i m p l i c i t y  the s u b s e q u e n e e  is a l so  d e n o t e d  by {(COn, 2 n ) } .  

The  c o n v e r g e n c e  of {K~(~0n, ----n)} (the im ag e  of the c o n v e l ' g e n t  s u b s e q u e n c e )  
fo l lows  f r o m :  

O 
a) Since  both G_~ and V T ~  a r e  f ixed  e l e m e n t s  ( see  E q . 1 2 ) )  
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b)By definition a) leads to 

I. <(~, _~); K~(to, _~)> I ~  C ~ 0(~, _~)ll ll(~, ~-)~z for  a l l  {~o, _~)( z 

or, by substituting (q0, _~) = K~(to, ~) 

liKe(to, ~_)11 z < c 2 II(to, _)l l  k 

c) Because K l is linea~, and because of a} and b} and the convergence of 
{(~o,1, ~2n) } in  the  ~ n o r m ,  t h e n  

�9 = lira II E~(%, --~m) - (%, -a.)~z = lira II K~(to m, ~m) - K~(ton .f2n)llz 

..< C ~ l i m  ~(torn, ~2m) - (ton, e n ) ~  = 0 
r n  ~Fi-,-~ ~ 

This inequality is, by definition, the condition for convergence of 

{K~%,, _%)} in  Z.  

Theorem: Let (to, ~)[Z be a fixed element and let P~ be the linear 
operator defined by: 

]R -~" [( -~" V~9]dV - ~R -~" [(~-" V)~] dV (24) 

fo r  all (~o, ~), (~, ~_)c Z 

then, Piis completely continuous. 

Proof." The continuity of P[ follows from the linearity. To ~roce the com- 
pactness let S, S E Z, be a bounded set and let {(~Pn, ~'n)~ be a sequence 
in S. As in the previous theorem this sequence can be a-priory chosen 
to converges in s Similarly, the convergence of {P~(~n,--~n)~ foilows 
f r o m :  J 

a) The first two integrals in Eq. (24) are bilinear functionals of the from 
of b 2 ; hence, (see Eq.17) 

- - ~ '  - z ~(~" ~)11 ~ I1(~, ~)11 z 

IS I li 1/4 3/4 ~II I/4([0 3/4 
~ - V ~ d V  < c  2 I1(~, _~)llz n(~n,_~.)~z ~(~.,_G)llz U(~, - , L  , ,_~/11 

R ] (25a) 
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b) The other integrals in Eq. (247 are bilinear functionals of the form of 
b3; hence, (see Eq. 22) 

~R ~"" 1/4 3/4 ~" [(--~'V~n] dV"<C2 I(%-,r a/4l (~, sz~R~ II(to, ~11 
z - z 

fR a/4 )11 */4 3/4 ~" [(-~n'V)~] dV<C211((P'~-)!Z ](~an'--~n)~s - Z s H(w'--~)~E 

(25b) 

c) Substitution of (~o, _r Ps , -~n) in (25a) and (25b) above, and because 
(to, ~_) is a fixed element: 

3/4 (26) [Pl(%~, -~n)[z < C2 II@n. !n) [~(4l l@n,  ~.) l l  z 

3/4 < c 2 d) Because S is bounded  ~((0n, !n)JI z 

UP~(~On, ~n)H Z ~< C 2 ~(Vn, ~n ) l l ; / 4  

e) Because P~ is linear d) becomes 

l im  ~Pl(~~ _~n) -  P~((Om. _~rn)llZ = l i m  IPl{(~~ �9 ~ r n ) -  (~n,g 'n)}llZ 

4 C 2 l i m  II(~~ �9 i r a )  - (Vn" !n)llZ = 0, 

wh ich  m e a n s  tha t  {P~(~)n' --@n)} is c o n v e r g e n t  in Z. 

The  o p e r a t o r  PI  can  be c o n s i d e r e d  as  d e t e r m i n e d  by the e l e m e n t  (to, _~). 
B e c a u s e  of the s y m m e t r y  in the p o s i t i o n s  of (% f2) and (% __0), PI c an  be,  
a l t e r n a t i v e l y ,  c o n s i d e r e d  to be d e t e r m i n e d  by (~0, @) ; t h e r e f o r e  (to, ~) and 
(9, ~) a r e  i n t e r c h a n g e a b l e  in the p r e v i o u s  inequa ' i i t i e s .  

Theorem: L e t  the o p e r a t o r  K s in Z*)  be de f i ned  by the fo l l owing  r e l a t i on :  

<((P, ~) ; Ks(~, _~)> = I [(9_-v)_a]dV- I _o-V dV 
for all (04 ~)cZ 

Then: i) K s is properly defined as an operator, 
2) K s is bounded, 
3) K s is continuous, 
4) K s is compact, 

i. e, K s is a completely continuous operator in Z. 

Proof: l)Let (to, _~)eZ be a given fixed element. The righthand side integrals 
are, obviously, a linear functional I(% _~). This linear functional is formed 
by the addition of a bilinear functional of the form of b 2 to a bilinear 
functional of the form of b3, in both of which the second element has been 
held constant. This constant element was made to equal the defining el- 
ement. Therefore (see Eq.l? and Eq.22) 

0) Because Z and Z Pr have only identical elements and their norms are equivalent all operators can be, 
alternatively, considered as defined on Zpr. 
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~r [~,.~@ dV 1_~ o~ ll~, r ~ 

oz', because (~o, ~_) is f ixed in Z: 

(27) 

] ~R qo~. V ~odV+ ~ r  [ (_~-V)a ]  dV ] 4 C 2 l ie, _r z (28) 

Now, from Ries~' theorem, the element Ks(~G ~) is uniquely defined by 
the linear functional I(~o, ~); but l(q0, _~) is determined by the fixed element 
(0~, ~); and, therefore, the set of pairs {(~0, ~); Ks(m, _~)} defines the 
operator' K s. 

2) The boundedness of K s is, obviously a consequence of (28). 

3) Let (an, f~n) be a sequence which converges to (tOo, f~o)(Z. By definition: 

<(~P, _~); Ks(~~ --~n) - K s { ~ I I ] ,  --~rn )> = - 'JR ~~ 2 m "  ~ ~~ + 

~ ~ [/_,~ ~ o / - * m  ~_~,o] ~ v  
R 

or, by addition and substraction of identical terms (see Eqs. 17 & 22) 

<(~. _~); K~(~o,,. 2n )  - K~(%~.  2 m ) > < c  I1(~. ~)11 z( l l (~, , .  _a,i)ll~ ~(~o.. _ z 
3/4 3/4 

Substition of (~0, _~) = Ks(~0 n, f~ n) - Ks(~0 m, --~m) in the last inequality leads 
to 

3.,'4 + 

1/4 8/4 ~_~ 1/4 ~ 8/4 
+ I1(%.-~, , , ) l lz ll(~n,. ~m)ll~ )11(~,,. ~--O-(~m.--,.)11~ I1( ,,. ~,,)-(~m.a---,~)tl~ 

(29) 

and because of Zc,s this becomes 

4) let (0~ n, =~ n ) be a sequence in S (So Z and S bounded). It has already 
been shown that such a sequence can be chosen to converge in s 

T h e r e  e x i s t s  an M, independen t  of n, such  that  I](~on, 9,,)}Jz < M a n d  
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t h e r e f o r e ,  f r o m  Eq. 29): 

JIKs(t~ n, f2 , t )  Ks(t~ m. --am)l z < c 2 M~/4ll(ton, _an) - <~0 m,  _~r~)II~a/4 

B e c a u s e  the s e q u e n c e  (ton' f/n) c o n v e r g e s  in g 

l im ~ Ks(ton" ~n) - Ks(tom' f2m)]lz = 0 
ITI ) FI"--~r 

hence  the s e q u e n c e  {Ks(tOn, en)} c o n v e r g e s  in Z. 

Theorem: The o p e r a t o r  K = K~ + K s has  a con t inuous  F r e c h e t  d e r i v a t i v e  
in s o m e  n e i g b o r h o o d  of Q. 

Proof." Le t  ( to ,  Q_)cZ be a f ixed  e l e m e n t  in s o m e  n e i g h b o r h o o d  of Q and 
le t  (h, I-I)r Z; by def ini t ion:  

<(q0, _r K(c0, ~_~> = ~R toG_~" r  ~RtPf2" VT~,  + 

- .~R ~" {[( ~ -+  H ) . V  ](~__ + H__)} dV- fR %o(f2 + H).V (to+ h)dV 

and, t h e r e f o r e  

- - - ' _i <(~p, 61, K((~, 2 )  + (h, HI) K(w, f21> h r  G ~ d V  (pit. T ~ d V +  
R 

fo r  al l  (~, _r Z 
01<') 

<(% r K((~, f2) + (h, H)) K(~, t2)> = <(~p, r Kz(h , H) > + 

+ <(tp, ~); PICh, It)> + <(qo, r KsCh, H)> 
-- for all (%% ~)~ Z 

Because (q% _~)e Z is arbitrary and because Z is complete 

K{(~, f2) + (h, H)} K(w, ~) = (K 1 + P~)(h, H) + Ks(h , It). 

(K I + P~)(h, H) is identified now as the differential of K on the element 
(w, 2) in the direction of (h, H), and K~(L, H) as the remainder. 
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The o p e r a t o r  K 1 which t akes  e l e m e n t s  (to, fY) f r o m  s o m e  n e i g h b o r h o o d  
of Q to the o p e r a t o r  Kj + PI (PI de f ined  on the g iven  (tO, ~ is the F r e c h e t  
d e r i v a t i v e  of K. On the e l e m e n t  Q, the d e r i v a t i v e  Ko ~ has  the va lue  of 
K 2 b e c a u s e  P,~ de f ined  on Q is ,  obv ious ly ,  the nul l  o p e r a t o r .  

To p r o v e  the con t i nu i t y  of K 1 l e t  {(tOn, ~n)} be a s e q u e n c e  which c o n v e r g e s  
to (wo, ~ o ) e Z  and l e t  Kn ~ deno te  the va lue  o f  the d e r i v a t i v e  of K on the 
e l e m e n t  (tOn, ~n). B e c a u s e  K~i s  i n d e p e n d e n t  of(~0n, fYn) 

K t _ K f + II d -- IlK, * P,~n)ll ~ IIP.l,-  - G,U -- IP, e(m-n)[[ (30/  

where  P,~m is the o p e r a t o r  P,~ de f ined  o n  (tOn, ---~n) and P~.(m-n). is ,  of c o u r s e  
P l  de f ined  on (tO~, ~ n ) -  (tOm, ~rn).  F r ~  p r e v i o u s  i n e q u a l i t i e s  ( see  
Eq.  25)) fo l lows  tha t  t h e r e  e x i s t s  a c o n s t a n t  C such  that: 

II  c,.-n ll -- sup 
II(h,H) H = I 

a/4 

and b e c a u s e  Z ~  s 

n '  , [ 2  " i/4 "tO �9 llP~(m_,) (h. c ~'~n)-(tom - )  d I, n -~-~n ) -  

The convergence of I(K~)'~ fo l lows  f r o m  the c o n v e r g e n c e  of (~0n, ~ n ) i n  
Z and from Eq.30); i.e., 

~ J 

, C 2 l im  [IKrn- Kn[ [ = lira ~ Pl(m-n) ~ "< l ira 
m,n--~ II, Ill ---> QO Ffl. [I -'-~O0 

H(u., _ ~ . ) - ( % ,  __a~)n z -- 0 

Theorem: L e t  (~0, ~)~ Z and le t  k be a r e g u l a r  poin t  of KI (not  an e i g e n v a l u e ,  
see  w 6 .4 ) .  The so lu t ion  of the equa t ion  
0 = U(~o, _r = K{9, ~)-) t I{~,  r is  unique  in s o m e  n e i g h b o r h o o d  of Q. Th i s  
so lu t ion  is  

(~,  _~) = Q 

Proof: From the properties of the operator K follows that in some neigh- 
borhood of Q the operator B has a continuous Frechet derivative B' (ob- 

l 

viously, I' exist). Moreover, B~ ~ K~ - XIQ - K~- Xl. Because X is a 
regular point of K b the inverse operator (K[- i I)-J exists and is linear 
(see w Hence, from the Hildebrand - Graves' theorem follows that 
the solution of the equation B(~, r = Q is unique in some neigborhood of 
Q. From the definition of K follows K Q = Q; hence 

B(Q) = K(Q) - A IQ  = Q 

8. Resu l t s  

Theorem I: Tile so lu t i ons  of E q . ( 5 )  a p p r o a c h  z e r o  a s y m p t o t i c a l l y  as  

t ~ oo if ~KIU ZPr < 1. 
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Proof." B e c a u s e  G and V@ a p p r o a c h  Goo and V T r  a s y m p t o t i c a l l y ,  t he r e  
e x i s t  two func t ions  f l ( t )  and f2( t )  such  that: 

3 ~ o o 2 
I2 J ( T G  i - T Gi~)  dV = f l ( t )  
1 R 

sup [(Gi - a i ~ ) +  8 (@ _ @~)[ = f2(t ) 
in R " ~ i  
on i 

The functions fl(t) and f2(t) approach zero as t - -+~.  Let (@, q),(@, q)cZpr, 
be a so lu t ion  of Eq . (5 ) .  - -- 
Then: 

1. 

I j o - 
R (TGi  ~ G i ) q i d V  (CBS) (~TG i - T ~ G  q t d  

_ol {so r 0 o  o ~2dV}l/6 a (~ T~" q idV < (G i- G i ~ o ) + - - ( T  - T= 
8x i (CBS) L 8x i 

0 t ) "(fR q~ dV}2 ~< sup ](Gi - G i ~  ) ' ..... ( ~ ' -  T~)  @2dV �9 qiqidV 
h~ R 0x i 
on i 

]/2 

By tile addi t ion  of pos i t i ve  t e r m s  on the r igh thand  s ide  these  b e c o m e :  

] fa (~'Gi - T~Gi~)qidV "< fl(t) ~(0, q)~.e 

O (G i - Oi= } +. (~" - ~'~o qi dV ~ f,2(t) 
8x i 

2. By  definition 

c, 

IIo, ~_1 n,: 

(31) 

..< IK~(0, alllzpr II(0, a/llzpr 
and b e c a u s e  of the l i n e a r i t y  of K 1 

[ t e(G_ + VTcx~)" q d V  I 4 lK~zpr  U(O, ct)~:pr 

3. F r o m  the above  inequa l i t y  and f r o m  E q s . ( 1 8 )  and (31) 

1 d I (O, 11/2 )ll(o, q)ll ~ 
Zpr -- Zpr 

2 
§ ~2(t)]l(o, q_)lla:+f,(t)ll(e, q__lUe 

(32) 
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L e t  IIKJ Z- < 1. B e c a u s e  Zer and Z have only i den t i ca l  e l e m e n t s ,  f r o m  
Z c s fo l low~rthat  Z Pr C ,~. Hence ,  the re  e x i s t s  a pos i t ive  c o n s t a n t  C 12 such  

that  

:-: + ll  H)ll(o, q)U .< c~ U(0, q)ll (33) 
- Z p r  

S u b s t i t u t i o n  of (33) in (32) y i e ld s  

_d. If(o, q)ll : -< + fb))ll(o, a)ll  + f1(t) (34) 
dt 

2 
4. Let e satisfy 0 < �9 < C I, Because both fl(t) and f2(t)approach zero 
as t ~ c% there exists a time t' and a positive constant C such that for 
t>t ~ . 

f 2 f~(t ) .<-  �9 = -  c < o (33) -C I + C12 + ~ 2 

f t ( t  ) < ~ 2 

Subs t i tu t ion  of (35) in (34) y i e ld s  

__o [(e, q)[ ~ - c2n(  ~ q)llg + c2 
d t  - s 

and by integration 

0 4 II(0, q)(t)ll e ~ ~ [exp ( - C 2 Z ) - e x p  (-C2t)] + 

+ II( 0, q)(t)l[s exp (C2Z)} exp ( -C2t)  

Hence ,  (0, q) tends  to z e r o  in the n o r m  as t --* o~; i . e .  

l i r a  II(0,  II : 0 
t---+,,~ q--) (t) s 

The p h y s i c a l  inte~rpretat ion of this  t h e o r e m  is d i rec t :  
When G~ and VePe~ are such that UKs < I any internal flow ~amps 

out, rega-Tdless of the history of the asymptotical values of G_~ and VT~"'). 
In other words, the rest, state is stable when IIKfI! Zpr < i. The inequality 
IIK~II Zpr < 1 is called the stability criterion. 

The computation of the norm of K,[ is a numerical problem and approx- 
imation methods such as the Ritz'Method and the Weinstein's Method are 
available. 

Theorel~ fI: The so lu t ion  (0, q) of Eq. (5) cannot  a t t a in  any s m a l l  t i m e -  
independen t  a s y m p t o t i c a l  va lue  dif-{erent f r o m  z e r o  un les s ) t  : 1 is  an e igenva lue  
of K~. 

Proof: L e t  (@~, q~),  be the a s y m p t o t i c a l  v a l u e s  of s o m e  so lu t ion  (@, q_) 
of Eq. 5). I tence  (@~7 q~) s a t i s f i e s  Eq. 6. Now c o n s i d e r  the s c a l a r  p r o d u c t  
of the m o m e n t u m  equat ion  and some  _~, (~, ~)e Zpr �9 and the p r o d u c t  of the 
e n e r g y  equa t ion  and ~p. I n t e g r a t i o n  over  R l eads  ~ to: 

o 
�9 ) N o t e ,  h o w e v e r ,  t ha t  the  in t e rna l  f low b e c o m e s  d a m p e d  as soon as G x V T  -= 0 and  the  ope ra to r  K~, 

o 
de f ined  on G and  V T  satisfies ~K~IIZpr < 1. 
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B e c a u s e  (% ~ )CZp r ,  

r Aq_~dV = 

the use of Green's Theorem 

ar ar 

I OXj 8X j 
m m d V  

06 ~o 
~ R ~ A O d V  = - ~ - - - -  dV 

Oxj~xj 

and the def in i t ions  of K s , K 2 and I l ead  to 

-4(9, ~) ; Ks(O,~ , q~)> - <(qo, _~), KI(@~, %o) 

fo r  all  (% r Zpr 

for all (% r 
Pr 

+ <(~o, r ; I(%o, q ~ ) >  = 0 

or, 

<(%0, ~) , (K - I) (Ooo, %0)> = 0 (36) 

for all (% r Zpr 

Because the element (% ~) is arbitrary Eq. (36) is satisfied only if 

K(%, q_~)= z(0~, q_=) (3v) 

Let now X = 1 be a regular point of Ks (hence, not an eigenvalue). If 
some neighborhood of Q, the pair (@~, q~) : Q is the unique solution of 
Eq. (37) (see theorem in Preliminary Res-ults) 

The operator K 2 is completely continuous and its spectrum is discrete. 
Therefore, even though X = i may be an eigenvahe of K~(i.e, if [[K~l]Zpr >i i) 
the associated solution does not depend continuously on the physical parameters 
of the problem and, consequently, is physically inadmissible. 

Theorem II implies then that even when ~K2]I Zpr >I i the internal flow 
cannot approach any small time independent asymptotical value, different 
from zero. In the general case investigated here if was not proved that 
the rest state is unstable if l]KfIlZpr >I i. 

However, if __G is restricted such that it satisfies Eq.(4), the rest state 
is unstable when ]IKfll zp r ~ i: 

o 
N~roof: When G_~ VT~ (see note onpg. 5) the bilinear functional which defines 
K~ is symmetric. In this case the associated operator Kf is symmetric. 
Because K i is symmetric and continuous it has an eigenvahe k + such that 
I~+f = lIK~ll. This eigenvalue ca~ be made positive 

i~et IIK~II~ = 1 + e 2 and let (@ q+) be [he eigenelement associated with 
k + = 1 + c z ; i.e, 

K2(@ +, q_+) : (i + ES)I(@ *, q_q+) 
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or  
<(q0, _r K[(0 +, q+)> = (1 + r < (q% 

for  e v e r y  (~0, ~ ) r  . 

By de f in i t i on  Eq.  (36) i m p l i e s  

- ~R O § 1 6 2  - ~ R ~ P q i ~ d V  = a x  
1 

: (i + 62) t (pr-i/2 80+ 0%~ _ _  + pr I/2 _ _  

3x k 3x k 

r (0 +, q+)> (36) 

o qT o 
dV / 

Oxj 3xj/ 
(37) 

G and V ~" a p p r o a c h  G~oand VoT ~ a s y m p t o t i c a l l y .  H en ce  al l  i n t e g r a l s  which  
con ta in  G Goo and VT - V T ~ ,  in e q u a t i o n s  (8), (9) and (10), a p p r o a c h  
zero as t --* o~. 

Suppose  that  a f t e r  s o m e  t ime  the r e s t  s t a t e  is a t t a i n ed  and le t  r +, 
and O -.< r +, 
the disturbance 
Eq.(lO); i.e. 

q+) 
q+)[[{1,  be a m e c h a n i c a l  p e r t u r b a t i o n .  A f t e r  a s h o r t  riffle 
in the f luid,  (0d, qd), s a t i s f i e s  the a s y m p t o t i c  f r o m  of 

d f 2 t i p  _1/2 00+ 30 + ( 0  2 * )dV ~- c r 
dt d ' qidqid 3X i 3x i 

O 

+ O* i~ Oxi / q~ dV 

Substitution of Eq. (37) in this equation yields 

bq] 
- -  ~ p r  1/2 ~__~_~i h V  

~xj O x j /  
/ 

d ( 80+30 + Oq~ 3_~q~ 
~ - t ;  (O2+q idq id )dV~- - -<4IR  1"r-1/2 + P r  1 / 2 -  dV > 0, 

R Ox k Ox k Oxj 0xj , /  (38) 

c I1( o-., q+/llzpr 
equat ion-  (37), 
e(0+, q_+): 

1 d 2 

4 dt 2 

<< 1; all  t e r m s  which a r e  of the t h i rd  p o w e r  in c ,  in the 
m a y  be n e g l e c t e d .  Hence  as long as  (0d, qd) a r e  c l o s e  to 

2 + q q id)dV ~ f - -  + -  ! dV > 0 (39} 
(Od id R k \ a t /  at at j 

F r o m  E q . ( 3 8 )  and E q . ( 3 9 )  fo l lows  that  (@d, 
is no l o n g e r  sma l l ;  h e n c e ,  

q d) can  d e c a y  only when it  
the r e s t  s t a t e  is not  s t ab l e .  

I) Landau L.D. & 
Lifshitz E .M.  

2) Sorokin V.S .  

3) Plltlcli D. 
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